EExymsind: 25 Electronic Projects VADO EPR RW: 75 c spring 63
 Now a quarterly!

WHITES RADIO a) LOG

OVER 14,000 LISTINGS WITH 600 CHANGES AM-FM-TV STATIONS WORLD-WIDE SHORTWAVE

Centralized Home Intercom Needs No Warmup or Switch

How to-
Throw TV Sound To Remote Radio

Build a Trunsistor Tester for \$4

Make Photoficods Out of light Bulhs

Read AC Current

 On a VolmeterBuild If Yourself SAVE \$40

trouble shootimg with the sighal tracer

YOU GET A VALUABLE ELBCTRONICS LAB

 GE, CENTRALAE, STACMPOLE, TRIM ond othei rellable manufacturers, liefail volue of perte mone is MORE TMAM 25 DOLLARS

plus a complete ELECTRONICS COURSE

You REALIY LEARNT, ELECTRONIG®S, The

 progressive "lear'h by doing" American Bosts Science Club system is the easiest, most thorough and most exciting way to a solid bockground in electronics, 8osit enough for beginnersrewarding enough for expens Nowhere else is atcourse of this scopo ovoilable of this LOW PRICE!

ENTHUSIASTIC MEMBERS WRITE:
"basie principles unforgelfably
loorned". ...
learned' . .
© , is, onty sher harins motapleted the extwertinati, th your kits that 1 cart sis 2 hiver irul) ond unforgettably learneel the hasie urinciple: of electpronim, JONN R. KANIA, : ISerkeles: Ave., Yunters 5. N. s.

"Your kits ore intifresting and
 rewarding ${ }^{\circ}$

t ami an elemtronics stument in the dir Fiurce and find your thas interesking and dewardink. We have not covered anythise in the schab thut you huve not ruvered in the kits, JOMN G. Dille. Keenlere Als Forre liare, Huluily 3fise.

- Far aheod oof frifind loking enother sourse"

A Priend of mulne lo laking a murfespuhaternce oxurse in olectronics, and f have learsiedr mane
 Trenty leasous. RA P. BILODEAU. 138 Sixchamge shov Leunt ters Maro.
"The number of concepts prosented
is amazing". . . is amazing ${ }^{\circ}$. ,
Tour klits uffer a raske if experiments tasually performed imbs in the belter hight orbool and mellego laboraturies. aphe oumber conrpeteneas if their development farmazing.

Available in. One Complete Shipment or Divided into 4 Monthly Kits as Shown

KIT 1 - DC AND AC CIRCUITS

Equip. For 26 Projects Including:

- Electroscope - Electro Magnet
- Galvanometer - AC Buzzer. Demagnetizer - Relay - Solenoid Coln Tosser - Safety AC Power Supply with Isolation Transformer

Subjects Covered Include:

- Magnetis Fields - Electron Theory - Electric Charge - Direct Current - Electro-Chemistry Alternating Current - Inductance - Transformer Principles

$$
\text { FREE with kit } 1 \text { - Surprise "Mystery Box" }
$$

KIT 2 - RESISTANCE, CAPACITANCE AND RECTIFICATION

Equip. for 18 Projects Including:

- Strobe Light - Thermocouple
- Wheatstone Bridge - Volimeter
- AC Rectifier - DC Power Supply

Subjects Covered Include:

- Ohm's Law - Power formulas - Rectification - Resistance Neon Glow Tubes - Capacitance - Fliter Circuils

FREE with kit 2 - Electric Soldering Iron KIT 3 - AMPLIFIERS AND OSCILLATORS
Equip. for 14 Projects Including: - Two Stage Amplifier - Capasitance Burglar Alarm - Prox. Imiry Detector - Migh Speed Strobe light - Ripple Tank Wave Gen-

Subjects Covered Include:

- Vacuum Amplifier Tubes - Volf. age Amplification - Ostillator Circuits - Frequency and Wave Length Sound Waves, Pitch and Resononce
- Ham License" Manual FREE with Practice Oscillator KIT 4 - AUDIO AMPLIFICATION AND RADIO

Equip, for 7 Projects Including:

- Microphone and Audlo Amplifier
- Broadcast Radio - Short Wave

Radio - Signal Tracer - Con.
tinuity Tester - Transmitier
Sublects Covered Include:

- Audio Amplifiers - Amplitude Modulation - Radio Theory Regenerative Circuits - Tuning Circuits
FREE with kit 4 - Radio-TV Service Manual

ALL FOUR KITS IN ONE SHIPMENT ONLY $\$ 7 / 80$

 OR_YOU CAN GET THE FOUR KITS, ONE A MONTH SENO $\$ 200$ WITH PAY $\$ 295$ plus coo postage ONLI - COUPON ONLY ON RECEIPT OF EACH KIT
ALL SHIPMENTS ON 10 DAY APPROVAL.

YOUR SATISFACTION OR YOUR MONEY BACK.
WE KNOW YOU WILL BE AMAZED AND DELIGHTED.
USE THIS "NO RISK" COUPON FOR EITMER PAID IN FULG OR MONTHIY PLAN

- AMERICAN BASIC SCIENCE CLUB, Inc., 501 E. Crockett, San Antonio 6, Texas-
 and will pay $\$ 3.95$ plus CoD Postage on arritral of each kit. 1 understand that I mall with be on 10 day approral with full refund guaranteed and stso that send met anshipped klts at aly time.
\square send me ABSClub's Electronics Lab (all four kits) in one shifpment. I enclose | $\$ 17.80$ full payment. postage pald to me. I understand that thits will be on a

[^0]ADDRESS

PICK YOUR OWIT suceess story FROM THIS PAGE

These are the true stories of people who seemed trapped in routine, low-pay shaky jobs. Handicapped by lack of proper training, they couldn't get the things they wanted out of life-more money, a job they liked, security and happiness.

They are a small sample of the thousands of men and women-young and old-who turn to I. C. S. for help. Their will-to-learn plus I. C. S. training have changed the course of their lives.

Are you diceouraged with your job and pay and feel you can't improve yourself because of lack of specialized education? Well, these men and women were in the same boat. With I. C. S. training, one of these success stories could be about you.
I. C. S. is the oldest and largest correspondence school. 250 courses. Business, Industrlal, engineering, academic, high school. One for you. Direct. jobrelated. Bedrock facts and theory plus practical application. Complete lesson and answer service. No skinping. Diploma to graduates.

Wins $\$ 3000$ contest -"After my I. C. S. courses I secured a new position." says Mr. Cecil Rhodes. My income has more than douhied and I recently won n 83000 sales contest."

"As a college graduate, I found I.C.S. very valuable," Robert Lee took the 1. C. S. Course in Advertising, is now Promotion Manager for a large corporation. "I. C. S. got me started on the way up," he says.

From clerk to Assistant Estimator. thanks to I.C.S. "Any way you look at it," writes Mrs. Edna James. "the time und money one spend. for 1. C. S. Courses will be repaid a thousandfold."

Reports 20% increase in salary! Gregory C. Johns says, "I. C. S. taining gave me unlimited opportunity! I lave completed one course, and am now enrolled in Practical Plumbing."

3 FREE BOOKLETS-a 36 -paze pocket-size guide to advancement, a gold mine of tips on "How to Succeed." Also a big catalog outlining opportunitics in your field of interest and a sample I.C.S. lesson.

INTERNATIOHAL GORRESPONDENGE SCHOOLS I C

Box J3781A, Scranton 15, Penna.
(In Hawall: P. O. Box 418, Honolulu. In Canada; I. C.S. Canadian, Ltd., Montreal.) Without cost or obligation, rush me FREE Success Kit, with 3 valuable booklets: (1) How to Succeed; (2) opportunity booklet about the field I've checked below; (3) Sample I.C.S. Lesson.

AncMITECTURE and BUIL DING TRADES
Air Condlitioning
Architecture
Arch. Drawing
Buitoing Contracting and Estimating
Carpentry \& Millwark
Heating
House Plannlng Painting
Plumbing
ART and DESIGN
Commercial Art
Fashion IIlustrating
nteplor Decorating
Magazine lllustrating
Show Card \& Sign
Painting
Skefching and Paint
Tomotive
Auto Body Rebuilding
Auto Electric
Technician
Automobile Mec
Engine (Gas e Diesel)
Engine Tune-Up

Transmission Specialist	Lab. Techniclan Nuclear Energy
aviation	Qlastics
Aero Engineering	\square Pulp, Paper
Aircraft Drafting	CIVIL ENGINEERING
Aircraft Mechanic	\square Civll Engineering
USINESS	Q Construction Engers.
Accounting	\square Highway Engineering
Cost Ascounting	\square Reading Structural
Public Accounting	Blueprints
Bus. Administration	- Sanitary Engineering
Executlve Training	Q Structural Engineering
Markeling	\square Survey ing \& Mapping
Personnel-Labor	draftina
Relations	\square Architectural
Programming for	\square Electrical and
Oigital Computers	Electronic
Purchasing Agent	8 Mechanical
Real Estate	- Sheet Melal
Salesmanship	Electrical
Sales Mgmt.	\square Elec. Appliance
Small Business Mgmt.	Servicing
Traffic Mgmt.	\square Electrical Engineering
EEMICAL	E Elec. Eng. Technician
Analytical Chemistry	E Elec. Motor Repairman
Chem. Engineering	Industrial Electronic
General Chemistry	Technician

\square Shorthand \square Stenographio Typist
STEAM and
DIESEL POWER
\square Boder Inspector
Power Plant Engineering Stationary Dlesel Engineering \square Steam Engineering SUPERVISION
\square foremanship-Supiv'n Personnel-Lab. Rel'ns TV.RADIO
\square Radio and.TV Servielng Radio-Telephone License IV Techniciant Practical Radio.TV Engineering MISCELLANEOUS
DRallroad
CTextile.
Dther (please specify)

Name
Age Sex
Home Address
Clty
Occupation
Zone____Stat

Working Hours
Special tow rates to members of U.S. Armed Forces I

RADIO-TV EXPERIMENTER

B. G. DAVIS

Publisher

JOEL DAVIS. Assistant Publisher

Garry Winter Editor-in-Chief
Joe Daffron. Managing Editor
Bill Wadkins. Art Editor
Leroy R. Kietzman. Production Editor

DON A. TORGERSEN..................... Editor

Byron G Wels. Elecironics Editor
Lynell A. Johnson. Associate Editor
John O. Bastas. Art Associate
John Neenan. Production Assistanl
Delores Henkelman. Production Assistant
Cover by Harold R. Stluka

RADIO-TV EXPERIMENTER Volume 15 , No. 1 , is published quarterly by SCIENCE AND MECHANICS PUBLISHING CO., a subsidiary of Davis Publications, Inc. Editorial, Business and Subscription Offices: 505 Pork Ave., New York 22, N.Y.; one-year subscription lfour issuesl. $\$ 3.00$ domestic, $\$ 4.00$ foreign. Advertising Offices: New York: 605 Park Ave., PL 2.6565; Chicogo: 450 E. Ohio St., WH 4-0330; Los Angeles: 6363 Wilshire Blvd., 653.5037. Application for second-class postage rates is pending of New York, N.Y. and af additional mailing offices. Copyright 1962 by Science and Mechanics Publishing Co!

COYNE

in Chicago-prepare for today's TOP OPPORTUNITY FIELD. Train on real full-size equipment at COYNE where thousands of successful men have trained for over 60 years-largest, oldest, best equipped school of its kind. Professional and experienced instructors show you how, then do practical jobs yourself. No previous experience or ad vanced education needed. Employment Service to Graduates.
START NOW-PAY LAIER-Liberal Finance and Payment Plans. Part-time employment help for students. get free book - "Guide to Careers" which describes all training offered in ELECTRICITY and TELE-VISION-RADIO ELECTRONICS-no obligation; NO SALESMAN WILL CALL.

Coyne ElectrícalSchool, 1501 W. Congress Parkway Chartered Not For Profit - Chicago 7, Dept. 13-B

Name
Address
State.

MAIL COUPOU R

```
Dept. 13-8-New Coyne Building 1501 W: Congress Pkwy., Chicago 7, Ill. Send BIG FREE book and details of all the praining you offer.
COYNE ELECTRICAL SCHOOL
COYNE ELECTRICAL SCHOOL AM-FM and Auto Radios Transistors Printed Circuits Test Equipment
EHECTIICITIT ELECTRONICS ON REAL
Motors-Generators -Switchboards-ontrols-Modern AppliancesAutomatic Electronic Control Units

\title{
COYNE offers \\ Low cost gle 1 \\ THE EOLORTV RADIO Training in Spare Time AT HOME
}

The future is YOURS in TELEVISION: A fabulous field-good pay-fascinating work-a prosperous future in a good job, or independence in your own business!

Coyne brings you MODERN-QUALITY Television Home Training; training designed to meet Coyne standards at truly lowest cost - you pay for training only - no costly "put together kits." Not an old Radio Course with Television "tacked on." Here is MODERN TELEVISION TRAINING including Radio, UHF and Color TV. No Radio background or previous experience needed. Personal guidance by Coyne Staff. Practical Job Guides to show you how to do actual servicing jobs-make money early in course. Free Lifetime Employment Service to Graduates.

\section*{ELECTRICAL SCHOOL}

Chartered as an educational institution NOT FOR PROFIT


contents
COVER STORY
Centralized Home Intercom ..... 38
FEATURE STORIES
Electronic Piano; It Never Needs Tuning ..... 44
College Radio Stations - How They Operate ..... 48
Selecting the Right Short Wave Receiver ..... 62
WHITE'S RADIO LOG (New Listing Incl. Over 400 Changes)
All U.S. and Canadian AM, FM, and TV Stations; Mexico, Cuba, Worldwide Shortwave ..... 159
FOR THE HAM AND DXER
Power Distribution Center ..... 30
Puzzled by Cryptic CB Messages? ..... 43
DX America ..... 58
3-Way Listening Dynamite ..... 60
Two Tube Long Wave Receiver ..... 75
Versatile Code Practice Equipment ..... 81
Shorty 80-40-15 Meter Antenna. ..... 121
EXPERIMENTING, TEST EQUIPMENT, AND THE ..... SHOP
Space Station Super Workbench ..... 36
\$4 Transistor Tester Uses Your VOM ..... 52
Read AC Current with Your Voltmeter ..... 55
Experimenter's Transistor Breadboard ..... 66
AC Experiments with Series Circuits ..... 70
Determining the Velocity of Sound ..... 86
Voltage Calibrator and Switch ..... 89
Meters and Multimeters ..... 94
Using Positive Feedback ..... 99
Troubleshooting Interference ..... 130
Home Appliance Tester ..... 138
SPECIAL PROJECTS
Low Cost Photo Lights ..... 26
Stereo Music Center ..... 101
Early American TV Cabinet ..... 114
A Musical Annunciator ..... 117
Underwater Metal Locator ..... 122
Wireless Remote IV Sound ..... 133
The Torpedo: A Capsule Portable Radio ..... 142
Neon Flicker Lamp ..... 145
Thermistor Thermometer ..... 147
DEPARTMENTS AND PUZZLES
Electroniss Numbergram ..... 85
Ham Radio Anagram Puzzle ..... 137
Looking Over New Products ..... 150



\title{
RCA training at home can be the smartest investment you ever made
}

Look what you get in the Course in Radio and Electronic Fundamentals


PLUS ALL THIS AT NO EXTRA COST...

\section*{15 KITS}
to build a Multimeter, AM Receiver and Signal Generator. Kits contain new parts tor experiments, integrated so as to demonstrate what you learn in the lessons and to help you develop technical skills. Each kit is fun to put together!


Also, comprehensive, fully-integrated home study courses in - Television Servicing - Color Television . Automation Electronics - Transistors . Communica tions Electronics - Computer Programming - Electronic Drafting. Stake out your future in electronics

SEND FOR FREE HOME STUDY CATALOG TODAYI

\footnotetext{


A Service of Radio Corporation of America: 350 W . 41 h St. New York 14, N. Y. 610 S. Maln St., Los Angeles 14, Calif.

The Most Trusted Name in Electronics

RCA INSTITUTES, INC. Home Siudy School, Dept. RX-13
A Service of Radio Corporation of America
350 West Fourth Street, New York 14, N.'Y.
Without obligation, rush me the FREE 64-page iltustrated booktet "Your Career in Electronics" describing your electionic home study training program. No salesman will call.
\(\qquad\)

\section*{Address}

City \(\qquad\)
Veterans: Enter discharge date.
CANADIANS-Take advantage of these same RCA courses at no additional cost. No postage, no customs, no delay. Send coupon to: RCA Vistor Company, Lid. 5581 Royalmount Ave., Montreal 9, Quebec.
}

\title{
BECOME A RADIO
}

\section*{Build 10-20 Radio and Electronic Circuits at Home}

\section*{ALL GUARANTEED TO WORK!}

YOU DON'T HAVE TO SPEND HUNDREDS OF DOLLARS FOR A RADIO COURSE

\begin{abstract}
The "EEdu-Kit", Offers you an outstandingipractical MOME RAOIO COURSE at a une of the most modern methods of home trainlag. You will learn radio theory, construeYou will learn how to build radlos uing regular schematicsi how to wire and solder In a professional manner; how to service radios. You will work with the wtandard type of punched metal chassis as well ait the latest development of printed Circult chas ifis. RF and AF ampliffers and oscillators, detectors, rectifiers, test equipment. You will learn trouble.shootlng, uning the progresive signal Tracer, progresslve signai Injector, Progres inve Dynamle Radio \& Electronics Tester, Square Wave Generator and the accompanying Amateur Licenses. You will bulld Rovice. Technleian und General clantel of F.C.C. Radio Oscllitar, Signal Tracer and signal Injector clrcultem and learn how to operate them. You wili receive an excellent background for television. \(\mathrm{Mi}-\mathrm{Fl}\) and Electronics. product of many years of teaching and engineering experience. The "Edu-Kit" wilis the vide you with basic education in Electronice and Radio, worth many times the complete
\end{abstract}

\section*{THE KIT FOR EVERYONE}

\section*{in You do not need the slightest baekgpound onted in Radio \(\delta\). Electronics because you want an interesting hobby, a well paying} Hed the "Edu-kit" in mave succes sfully
tries of the world. Thie "Edu.kit, 79 coun the "Edu-kit a worth-while invewtments you cannot make a mistake. The "Edou.kit"

\section*{PROGRESSIVE TEACHING METHOD}

The Progrtssive Radio "Edu.Kit" is the foremost edueational radio kit In the world, Kit" usea the modern educational princlple of "Learn by Doing." Therefore you construet, learn schemattics, study theory, practice trouble-shooting oill in a closely integrated proOram designed to provide an easily-learned, thorough and. Interestinq, background in radio. function, theory and wiring of these parts. Then you build adu-kimple radio. Whith this first变et you will enjoy llstening to regupar broadcast stations, learn theory, practice testing and trouble-thooting, Then you build more advanced radio, learn more advanced theory and techniquos. Gradually, in a progressive manner, and at your own rate, you will prolesslonal Radio Technician.i", included In the "Edu-Kit" course are Receiver, Transmitter, Code Oscillator, Signal Tracer, Square wave Generator and signal injector eircuits. These are not unprofes:
sional "breadboard" experimente, but genuine radio eircuits, construeted by means of slonal "breadboard" experimentw, but genuine radio circuits, constructed by meana of pron hnown as "iprinted circuitry." These circults operate on your reguler Ae or DC house current

\section*{THE "EDU-KIT" IS COMPLETE}

You will receive all parts and instructions necessary to bulld diferent radia and elec tronics circuits, each guarantead to operate. Our Kits contain tubes, tube sockets, varihardware, tubing, punched metal ehassiajectric condensert, resistors, tie strips, coils, selenlum rectifiers, volume controls and switches, etc. Inciuding printed circuit chassis. ppecial tube sockets, hardware and instructionsif You also receive a useful set of tools, a Toster. The "Edu-Kit' also includes Code Instructions and the Progreasive code Diectronica in additlon to F.C.C.-type Questions and Answere for Radio Amateur License training. You,
 You receive all parts, tools, inatrutions, etc. Everything is youra to keep.

\section*{NOW! TRAIN AT HOME IN RADIO AND ELECTRONICS}

ORDER DIRECT FROM AD . . . . USE COUPON ON NEXT PAGE diEGIVE FREE BOUUS RESISTOR AND COIDEESSER KITS

\section*{TECHNICIAN for only \({ }^{\text {\$ }} 14\) it p \(^{98}\)} THE NEW IMPROVED DELUXE

\section*{Progressive} Radio "Edu-Kit" is now ready

+ 12 RECEIVERS
* 3 TRANSMITTERS
* SQ. WAVE GENERATOR
- AMPLIFIER
* SIGNAL TRACER \(\star\) SIGNAL INJECTOR
\(\star\) CODE OSCILLATOR
PRACTICAL
HOME
RADIO
COURSE

144

\author{
SCHOOL INQUIRIES INVITED
}

\section*{Unconditional Money-Back Guarantee}

The Progressive Radio "Edu-Kit" has been sold to many thousands of individuals, schools and organizations, public and private, throughout the world. It is recognized internationally as the ideal radio course.
By popular demand, the Progressive Radio "Edu-Kit" is now available in Spanish as well as English.

It is understood and agreed that should the Progressive Radio "Edu-Kit" be returned to Progressive "Edu. Kits" Inc. for any ra. son whatever, the purchase price will be refunded in pull, without quibble or question, and without delay.

The hist recognition which Progressive "Edu-Kits" Inc. has earned through its many years of service to the public is due to its unconditional insistence upon the maintenance of perfect enkijeering, the highest instructional standards, and \(100 \%\) adherence to Its Unconditional Money-Back Guarantee. As result, we do not have a single dissatisfied customer throughout the entire world.

\section*{TRAINING ELECTRONICS TECHNICIANS SINCE 1946 \\ FREE EXTRAS}
- SET OF TOOLS
- SOLDERING IRON
- electronics tester
- PLIERS-CUTTERS
- ALIGNMENT TOOL
- WRENCH SET
- Valuable discount card
- CERTIFICATE OF MERIT
- tester instruction manual
- high fidelity guide quizzes
- TELEVISION BOOK • RAOIO TROUBLESHOOTING BOOK
- MEMBERSHIP IN RADIO-TV CLUB CONSULTATION SERVICE - FCC AMATEUR LICENSE TRAINING
- PRINTED CIRCUITRY

\section*{You Will Find That The Progressive Radio "Edu-Kit" Is Perfect}

FOR anyone who wishes to learn more about radio construction, theory and servicing.
- •FOR anyone who is looking for an interesting hobby.
- . FOR anyone who would like to learn radio but does not have time to attend regular school hours.
- - FOR anyone who wants to start studying for a high-paying radio job.
- - FOR anyone who wishes to start in Television.

\section*{TRY MY}

\title{
TV and CODRS FRE
RADIO \\ REPAIR \\ FOR 1 MONTH
}

\section*{"If you haven't earned at least \(\$ 100\) in spare time during that period you pay not a cent." \\ Here it Is! The most amazing guarantee ever offered on any rado. TV course anywhere! We'll send you Abraham Marcus' course to use FREE for one fyll monthi if in that time you haven't actuslly made \\ o easy to use. hais senstitional ofer First, because these books ar \\ WHAT YOU GET IN THESE 3 GIANT VOLUMES}
not penny! Why do we m language that made the author's "Elements of Radio" a 1.000 .000 cony, best-Reller. Second, because these books get right to the point the first few chanters of ing fashton. For example, once you master ready to do service jobs in the tield-jobs that account for buer \(80 \%\) of all sertioe calla. risk nothine when you send the coupon belove You don't have to keep the books and pay for them unless you setually make extra money fixtng radtos and TV aets. Even when you decide to keep them. You pay on easy terms. Mall the coupon now.

\section*{MAIL THIS COUPON}

Prentice-Hall, Inc., Dept. 5747-AI
Englewood Cliffs, New Jersey
Please send me Abraham Mareus \({ }^{\circ}\) TV \& RADIO REPAIR COURSE Please send me Abraham Marcus TV \& RADIO REPAIR COURSE
(3 voltmes) for 10 days FREE examlnation. With 10 days I will elther return it and owe nothing. or send my first payment of 85.80 . plus in iew cents postage. Then. afler I have used the course for a FULL MONTH. If I am not satished I may return it and you will refund my frst payment. Or 1. will keep the course months, \(\$ 5.25\) less than if books were bought tndividually.
Name
ELEMENTS OF TELEVISION SERVICING. Analyzes and lllustrates more TV defects than any other book, and provides complete step-by-step procedure for correct-
ing each. You can actually SEE what to do by looking at the pletures. Reveals for the first time all detalls, theory and servicing procedures for the RCA 28-tube color teleVision recelver, the CBS-Columbla Model 205 color set, and the Motorola 19 -inch color recelver.
RADIO PROJECTS. Bulld your own receivers! Gives you 10 easy-to-follow projects, including crystal detector recelver -diode detector recelver-regenerative recelver-audlo-frequency amplifer-tuned radio-frequency tuner-AC-DC superheterodyne receiver-etc.
RADIO SERVICING Theory and Practice. Here is everything you need to know about radlo repair, replacement, and readjustment. Easy-to-understand, step-by-step self-training handbook shows you how to locate and remedy defects quickly. Covers TRF receivers; superheterodyne recelvers, short-wave, portable, automoblle recelvers, etc. Explalns how to use testing instruments, such as meter, vacuum-tube voltmeters, tube checkers, etc., etc.

\section*{BECOME A \\ }
\(\star\) HOW TO BECOME A RADIO AMATEUR
* THE RADIO AMATEUR'S LICENSE MANUAL
\(\star\) LEARNING THE RADIOTELEGRAPH CODE
* OPERATING an amateur radio station


All you need to know to get your ham license is contained in these four booklets, written by amateurs, for amateurs, and published by the amateurs' own organization. Easy to understand, yet thorough, these ARRL publications are truly your GATEWAY TO AMATEUR RADIO.
american radio relay league, Inc.

\section*{West Hartford 7, Connecticup}


\section*{TRANSISTOR IGNITION}

\section*{TRHISFIRE}
now available as a 2 TRANSISTOR 2 DIODE

Why pay more for less?
YOU can have ALL the FUTURISTIC ADVANTAGES of TRANSISTOR ELECTRONIC IGNITION NOW at LOWEST COST by assembling this TESTED KIT yourself. COMPLETE set of parts to build WARD circuit in February Science and Mechanics. Includes 2 POWER TRANSISTORS, 2 1-watt ZENER DIODES. FINNED aluminum HEAT SINK, High-ratio COIL. TRANSFIRE DECAL, ballast, leads, and all hardware. EVERYTHLNG needed for a PROFESSIONAL JOBI Makes a \(\$ 70\) Conversion at HALF the cost.

TKX-2 with \(250: 1\) coll. 30 kv output. ......... \(\$ 34.95\)
TSKX-2 with \(400: 1\) coil. 40 kv output. . . ........ \(\$ 39.95\) bove kits wired and plastic potted-add \(\$ 15\). . . \(\$ 29.95\) Negative-ground only. Point insulation kit for positive-ground- \(\$ 2.50 \mathrm{pp}\).

TX250 heavy duty Coll \(250: 1\) ( 3 lbs ) . . . . . . . 59.95 T400 High-efficlency Coil \(400: 1\) ( 3 lbs ) ..... \(\$ 14.95\)

\section*{Ready-to-install Conversions}

You can also get TOP MLLEAGE HIGHEST PERFORMANCE, LONG POINT AND PLUG LIFE, IMPROVED STARTING with one of our wired TRANSFIRE, systems. These include HERMETIC

Model T 6 or 12 v. Negative-ground \(30 k v\). 39.95

Model T2 Two-transistor model T............. \(\$ 44.95\)
Model TS Special 40kv Negative-ground. . . . . \(\$ 59.95\)
Model T52 Two.Transistor Model TS. ....... \(\$ 49.95\)
Model TP 30kv 6 or 12 v. Positive-eround, \(\$ 54.95\)
\(\left.\begin{array}{ll}\text { Model TP } \\ \text { Model TP5 } 40 \mathrm{kv} & 6 \text { or } 12 \\ \text { DIRECT } \\ \text { DINSTALLATION }\end{array}\right\} \begin{aligned} & \$ 54.95 \\ & \$ 69.95\end{aligned}\) Marine and other models available too. Custom Designs. Full line of parts at LOWEST PRICES. Free lists. Dealer Opportunjties.
Specify car, voltage, and grounding when ordering. Cash orders over \(\$ 30\) prepaid. \$5 depostt COD's.

PALMER ELECTRONICS LABORATORIES, INC.
GARLISLE 29, MASS.
AL 6.2626
 ELECTRONICS Faster - with
1. METER - Transistorized, Portable, Al-DC Multimeter

\section*{2. SCOPE - jinch New Streamlined Commercial-Type Oscilloscope}
3. ELECTRO-LAB* - For 3 Dimension Circuit Building

To help you get ready F-ASS.T.E-R . . and THOROUGHLY . . . for good.paying job opportunities in the fast growing Electronics field, Devry Technica! Institute now presents the newest and finest training advantages in its over 30 years of experience. Now . . . AT HOME ... in your spare time, you prepare with "industry-type" home laboratory equipment. To provide real PRACTICAL EXPERIENCE, you build a quality Transistorized Meter and a 5 -inch industrial-type Oscilloscope . . . work with small, 3 -dimensional circuits on Devry's new Design Console . . . use highly jnstructive home training movies . . . and follow up.to-date lessons with many tine-saving fold out diagram sheets.

Little wonder Devry men qualify for such fine opportunities in Space-Missile Electronics, Automation, Computer Work, Radio-TV, Industrial Controls, and other fields.

You learn FRACTICAL techniques important in today's Space Age industry, because you build many cempact circuits with the streamlined Electro-Lab, using exelusive solderless "modular conaectors." You perform over 300 construction and test procedures in all! Your self-built test equipment has function-grouped controls, meter scales color-keyed to the panel markings-much like instruments used on today's jobs. What's so important, the home laboratory and the test equipment are YOURS TO KEEP!

\section*{INDUSTRY NEEDS \\ TRAINED MEN}

Ihrough this remarkable 3-way method, Devry Tech has helped thorsands of am. bitious men prepare for good jobs or their own profitable full-time or part-time service shops. It is the newest in a long series of PRACTICAL training aids that we have pioneered and developed in more than three decades of experlence. Sound interesting? Then see how DeVry Tech may he!p You. Mait the coupon today.

From RadIO to SPACEMISSILE ELECTRONICS DeVfy's training goes all the way from radio repair . . . to space-missile etectronics. That's the range of subjects corered in its programs AT HOME or in its well-equipped training centers in Chicago and Toronto. You Searn up-to-date techniques, working with new equipment, modern texts, movies-one of to. day's finest combinations of training equipment . . . geared for RESULTS!


When you complete the program, DeVry's eficient Employment Service is ready to help you get started. There is no extra charge-ever-for this aid. aCCREDTTED MEMBER, NATIONAL HOME STUDY COUNCIL
- Trademark *

\section*{MAIL COUPON FOR FREE FACTS}

\section*{DEVRY TECHNICAL INSTITUTE \\ 4141 Belmont Ave., Chicago 41, III., Depl RTE.1.T}

2082
Please give me your two free booklets. "Pocket Guide to Real Earnings"" and "Electronics in Space Travelo"; atso include detalls on how to prepare for a career in Electronics. I ami interested in the following opportunity fields (check one or more): Q Space \& Missite Electronics
- Communications - Television and Radio

Microwaves
8 Radar
Computers
Automation Electronics

\footnotetext{
Name_Age
Address Apt
City Zone__Stase
C Check here if you face milltary service.
Canadian residents: Write DeVry Tech of Canada, Lid 970 Lawrence Avenue West, Toronto 19, Ontario
}

\section*{Weller Heary Duty Soldering Kit}

Features a professional DUAL HEAT gun. Two trigger positions let you switch instantly to low 240 -watt or high 325 -watt heat to suit the job. By using high heat only when necessary, you prolong tip life. Heat and spotlight come on instantly when trigger is pulled. Included: Soldering tip. Smooth-
ing tip. Cutting tip. Tip-changing Included: Soldering tip. Smooth-
ing tip. Cutting tip. Tip-changing wrench. Solder. Instructions. Plus
break-proof plastic case which can wrench. Solder. Instructions. Plus
break-proof plastic case which can be used as a lunch, fishing tackle or tool box. Model D-550PK.

\title{
EIECTROTIC SURPIUS BARGIITS savelp \(10.0 \%\) \\ NICKEL CADMIUM BATTERY 1.2 VOLTS
}

RCA 6032 IMAGE-CONVERTER TUBE Combined with suitable optleal systems, this 3 -electrode tube permits viewing of scene with infrared radiation. Scene to be viewed is imaged by optical objectlve upon semi-transparent photocathode. Spectral resp., S-1; good response up to about 1200A. Max. ratings, absopeak AC, Erid \#1.2700, \$9.95 ppd.

IHT-6 WILLARD G-VOLT STORAGE BATTERY Rated 2.4 amp hr . Approx. dimensions : \(31 / 2^{\prime \prime}\) !. \(\mathbf{x} 13 / /^{\prime \prime} \mathrm{w}\). x 21/8" h. Weight: 1 1b. 3 oz (plastic case) Dry-charged.
\(\$ 2.50\)
POTTER \& BRUMFIELD RELAY
\#SM5LS SPDT 8,000 ohm \(11 / 16^{\prime \prime}\) dia. I \(111 / 16^{\prime \prime}\) long. Approx
weight 1 oz. Hermetically sealed. Standard 7 -pin minlature base. \(\$ 2.00\)

\section*{MINOR SWITCH}

\section*{(2)} 10-position, 3-Dole with stopper coll and reset coll 6-12 volts D.C. off-normal non-bridging wiper ap. prox. dlmensions: \(4^{\prime \prime}\) long x \(41 / 2^{\prime \prime}\) high \(\times 15{ }^{5 \prime}\) wide, weight : 1 lb . \(\$ 9.95\)
 Rechargeable thousands of times. Alkallne storage battery sintered-plate. Flat voltage curve during discharge. Will hold charge for long period of time. High discharge rate up to 50 amps. Splli-proof, may be used in any position. Approx. 6-ampere-hour capacity. Dimensions: \(6^{\prime \prime}\) high ; \(2^{\prime \prime}\) wide; \(1 / 2^{\prime \prime}\) thick. Approx. wt.: 6 oz. Uses potassium hydroxide \((30 \%\) Electrollte). \(\$ 1.95\) Extremely precise, rugged DC general-purpose sensitive relay. Balanced armature. single-pole, double-throw. Suitable for wide range of adjustments. Dimensions:
\(1^{33} 4^{\prime \prime} \times 15 / 1 n^{\prime \prime} \times 11 / 16^{\prime \prime}\) high. Weight : \(41 / 4 \mathrm{oz}\). 5F-10,000 : 10,000 coil ohms. Operates 1.0 ma DC 5F-16, 000-\& : 16,000 coil ohms. Operates 0.5 ma DC


POWER TRANSFDRMER Output: 12, 24, 36 volts. In put: 100 volts, 60 cycles. slngle-phase. Will handle \(21 / 2\) amps. Steel case is hermetio cally sealed. \(31 / 2^{\prime \prime} \times 23 / /^{\prime \prime} x+1 / s^{\prime \prime}\)

dIRECT-REAUING MAGNE TIC COMPASS


Full-tlorting card, compensating maknets. and dlal lisht avall. In bi- of 19 -v. bulb. Iuminous dial.
Mifg. by Bendix- Lionecr. \(344^{\prime \prime}\). Migd. by Bendix-Lioneer. \({ }^{33} 33^{\prime \prime} \times 8\) \(\begin{aligned} & 33, " \times x \\ & \text { paid. }\end{aligned}\)

.95

5

SILICON RECTIFIERS

1N1446
1N144
iN144
IN

\section*{1 N}

X-BAND POWER LEVEL TEST SET. TS-36/AP Brand new, in orlginal packing, with accessories. Measures 10 to 30 dbm. 8700-9500 me
\(\$ 14.95\)
All pricen FOB Pasadena unless othervise woted. No COD's.

\section*{C\& \(H\) SALES CO. \\ 2176 E. Colorado St., Pasadena, Calif.}

\section*{New Model 161 UTILITY TESTER \({ }^{\text {® }}\)}


\section*{As an electrical trouble shooter the Model 161:}
- Will test Toasters, Irons, Broilers, Heating Pads, Clocks, Fans, Vacuum Cleaners, Refrigerators, Lamps, Fluorescents, Switches, Thermostats, etc.
- Will test all TV rubes (including picture fubes) for open filaments. and burned out fubes.
- Measures A.C. and D.C. Voltages,
(Both 110 Volt and 220 Volt lines).
- Will measure current consumption (amperes) while the appliance under test is in operation.
- Tncorporates a sensitive directreading resistance range which will measure all resistances commonly used in electrical appliences, motors, etc.

\section*{As an Automotive Tester the Model 161 will test:} - Both 6 Volt and 12 Volt Storage Batteries - Generators - Starters Distributors - Ignition Coils - Regulators - Relays - Circuit Breakers - Cigarette Lighters - Stop Lights - Condensers - Directional Signal Syso pems - All Lamps and Bulbs - Fuses - Heating Systems - Horns - Also will locate poor grounds, breeks in wiring, poor connections, etc.


\section*{INCLUDED FREE!}

This 56-pago-book-practically a condensed ceurse in electricity. Learn by doing.
Juat read the following partial lint of contenis:
- What te electricity? - simplifed version of Ohms Lav © What is wattare? Bumplifed wittage charts How to measure voltleatere - Bow to tese in lectrici amplance and motors uains in timpllited trouble-Ehogtitit techalque.
- How to test all TV tubes; sloo stople procedure for determinios which specinc tube (or tubos) is cetusins the trouble.
- How to trace trouble in the electrieal ctreutts and perts in eutomoblet and trucks.

Model 161 comes complefo
wifh obovebook and fert
feeds. Only................
\(\qquad\)

You don't pay for the Model 161 until AFTER you have examined it in the privocy of your homel


Try it for 10 days before you buy. If completely satisfied then send \(\$ 5.00\) and pay the balance at the rate of \(\$ 5.00\) per month until the total price of \(\$ \mathbf{2 2 . 5 0}\) (plus small F.P. and budget charge) is paid. If not completely satisfied, refurn to us, no explanation necessary.

ACCURATE INSTRUMENT CO., INC.
Dept. D-230, 911 Faile St., Now York 59, N. Y.
Please rush me ane Model 161. If satisfactory I agree to pay \(\$ 5.00\) within 10 days and balance at rate of \(\$ \$\) per menth until total price af \(\$ 22.50\) (plus small P.P. and budget charge) is paid. If not satisfactory, 1 may return for cancellation of account.



\section*{12 WATT TRANSISTOR AMPLIFIER \(\$ 095_{\substack{\text { Each } \\ \text { pat }}}\) \\ Plus
Postage}

A beautifully engineered 12 watt Transistor Amplifier for music systems, public address, paging, and many other uses. Complete with husky A.C. power supply. Uses two power transistors with thermister bias protection. Input impedance- 16 ohms, ouput impedance- 200 ohms. Line to feed ony desired number of speakers at remote points if desired. Two volts across 16 ohm input drives to full 12 watt output. Room for additional stages if desired to increase gain. These amplifiers built to run continuous duty. Chassis \(91 / 4^{\prime \prime} 1 \times 23 / 4^{\prime \prime} W \times 47 / 8^{\prime \prime}\) high. New, originol manufacturer packing. Shipping weight, 12 lbs .

\section*{TRANSISTOR BROADCASTER}

A unique 2 Transistor Phono Oscillator which plays thru any broadcast band. Radio will operate mike or phono pickup. Originally designed to add Stereo to regular monaural system and pricd at \(\$ 16.75\) each. SPECIAL CLOSE-OUT
each \(\$ 2.50\)


\section*{FREE CATALOG}

WRITE FOR YOUR COPY OF BIG ELECTRONIC PARTS BARGAINS. MAILED ANYWHERE IN U.S.A.
- -

CAPITOL COMMODITIES CO. INC. 4757 N. Ravenswood Ave., Chicago 40, Illinois PHONES: LO 1-3355

ports on all the worthwhile new mobile homes and travel trailers-colorful "camera tours" through America's most exciting parks-expert articles for your more enjoyable and profitable mobile home living. For new subscribers, mail the coupon below.

\section*{THE NEXT 10 ISSUES \\ \(\$ 2.69\)}


START NOWI Break through the Earning Barrier that stops half-trained men. N.T.S. "All-Phase" training prepares you at home in spare time - for a high-paying CAREER in Electronics - TV - Radio as a MASTER TECHNICIAN. One Master Course at One Low Tuition trains you for unlimited opportunities in All Phases: Servicing, Communications, Preparation F.C.C. License, Broadcasting, Manufacturing, Automation, Radar and Micro-Waves, Missile and Rockel Projects.
A more rewarding job .... a secưre future... a richer, fuller life can be yours! As an H. T. S. MASTER TECHHICIAN you can go straight to the top in industry ... or in your own profitable business.

\section*{SUCCEED IN MANY HICH-PAYING JOBS LIKE THESE...}
- Tv.Radio Sales, Service and Repaïr
- Profitable Business of Your Own
- Communications Tecmician - F.C.C. License
- Mi-fi. Stereo \& Sound Recording Specialist
- IV.Radio Broadcasting Operator
- Technician in Computers \& Mlssiles
- Electronics field Eng meer
- Spectalist in Microwaves \& Servomechanisms
- Expert Jrouble Shooter
- All.Phase Naster Tectinician

\section*{19 BIG KITS}

YOURS TO KEEP

\section*{NATIONAL Fimas. SCH00LS \\ romo vior tantimac sucr rous}

Wrile Dept. RKK-13


acceldifte mimate \(\therefore\) the only netionolly recognired oxerediting home indr tchools.
N.T.S. Shop-Tested HOME TRAIN. ING is Betfer, More Complete, Lower Cost... and it is your key to the most fascinating, opportu-nity-filled industry today!

\section*{YOU EEARN QUICKEY AND EASILY}

\section*{THE N.T.S. SHOP-TESTED WAY}

You get lessons, manuals, job projects, unlimited consultation, graduate advisory service.
You build a Short Wave-Lang Wave Superhet Receiver, plus a largescreen TV set from the ground up, with ports we send you at no addi-

tional cost. You olso get a Professional Multitester for your practical job projects.

\section*{EARN AS YOU LEARN...} WE SHOW YOU HOWI

Many sfudents pay for entire fuition - and earn much mare - with spare time work they perfarm while training. You can do the same... we show yau how.
SEND FOR INFORMATION NOW... TODAYI IT COSTS YOU NOTHING TO INVESTIGATE.


NATIONAL Exime SCHOOLS
worlo-wioc training since 1905
Mail Now To
National Technical Schools, Dept. RKK-13 4000 S. Fiqueroa St., Los Angeles 37, Calif.

Please ínsh FREE Electronics-
TV.Rodio "Opoorturity" Book ond Arval Lesson. No Salesman will call.

\section*{latest SAMS BOOKS for EVERYOME IN ELECTROHICS}


\section*{USE THIS HANDY ORDER FORM -}Servicing Electronic Organs. Describes typical circuits for each section of the organ. Includes special chapters on tuning, adjustment and accessories. Full troubleshooting details. Order ORG-1, only ... \$4.95Having fun with Transistors. Thirteen fun-filled, useful construction projects using simple transistor circuits. Easy to build-wonderful variety of practical projects and games. Order TMF.1, only.......\$2.50 Air Conditioning Installation \& Maintenance. Describes theory and operation of all types of air conditioners; central, room, auto-tells how to install, repair and maintain. Order ACM-1, only
Sams PHOTOFACT Guide to TV Troubles. Causes of more than \(90 \%\) of TV troubles can be isolated in minutes by following the procedures described in this book; shows symptoms, analysis checks and where to look for troubles. Order PFG-1, only . . \(\$ 2.50\)Transistor Substitution Handbook. Shows over 13,600 direct substitutions; includes hasing diagrams, polarity indications and manufacturers for over 4000 transistor types. Order SSH. 3, only
\(\$ 1.50\)
Computer Basics: Solid-State Computer Circuits. Followup to the famous Sams "Computer Basics" 5 -volume work. Describes latest use of semiconductors intoday's computers. Order Cs S-6, only . . . . . . \(\$ 4.95\) All 6 "Computer Basics" Volumes. ........ . \(\$ 27.00\) Amateur Radio Antenna Handbook. Tells how to select the best antenna system for optimum performance. Details theory, antenna design, construction and application. Order AMA.1, only.
- How to Read Schematic Diaorams. RSD. 1 81.50
- Bazic Electronics Series: Transistor Circults. 日ET. 1 2.95
- 1962 Tent Equipment Annual. TEA. 2
- Modetn Dictionary of Electronies. DIC-1 1.50
- ABC's of Radiotelephony, ABT-1 6.95
-ABC's of Electronic Organs, ECO. 1
- ABC's of Synchros \& Servos. ASE-1
\(\square\) Radio Receiver Servicing. RS. 2
- Tube Subalitution Mandbook. TUB-4
- 100 Ways to Use Your Oscilloscope. TEM-2

FREE!
Ask for the Sams Booklisl, describing over 200 important books.
FREE! Index to Photolact, world's finest cip. cult data on 53.000 TV \& radio models.

HOWARD W. SAMS \& CO., INC.
Order from any Electronic Parts Distributor, or mail to Howard W. Sams \& Co., Inc., Dept. A-143 4300 W. 62nd St., Indianapolis 6, Ind.
Send books checked above. \$ \(\qquad\)
\(\square\) Send FREE Booklist. Send Photofact Index
Name
Address
City
\(\qquad\)
\(\qquad\) 7one State IN CAMADA: A. C. Simmonds \& Sons, Ltd:, Toronto 7

\section*{NEW-the} SCIENCE and
UECHANICS 10 foot King Size Push-Pull Steel Tape \(\$ 2.75\)
Developed for making difficult upright and horizontal measurements. Wide blade can be extended for easier, more accurate work. Chrome plated die cast case. \(3 / 4\) inch tempered steel blade has bonderized white enamel finish on both sides. Blade marked in eighths and sixteenths in large easy-to-read jet black. "Quickconversion" foot and inch markings on blade. Self-adjusting end hook assures accurate inside and outside measurements. EXTRA: free tape holster complete with belt clip included. Only \(\$ 2.75\) each.

FULLY GUARANTEED


\section*{Science and Mechanics PRODUCTS DIVISION}

505 PARK AVE./NEW YORK 22, N. Y. Please send me \(\qquad\) King Size Push-Pull SCIENCE and MECHAN. ICS Tapes at \(\$ 2.75\) each. 1 am en. closing full payment.

Name \(\qquad\)
Address
(please print)

City \(\qquad\) Zone \(\qquad\) State
Add \(\mathbf{1 0 \%}\) for Canadian and Foreign opders

\section*{Pick the course for your career...}

Electronics Technology


A comprehensive program covering Automation, Communications, Computers, Industrial Controls, Television, Transistors, and preparation for a 1 st Class FCC License.

\section*{Electronic Communications}


Mobile Radio, Microwave and 2nd Class FCC Preparation are just a few of the topics covered in this "compact" program . . . Carrier Telephony too, if you so desire.

First Class FCC License


If you want a lst Class FCC ticket quickly, this streamlined program will do the trick and enable you to maintain and serv. ice all types of transmitting equipment.

Broadcast Engineering


Here's an excellent studio engineering program which will get you a lst Class FCC License and teach you all about Program Transmission and Broadcast Transmitters.

\title{
Get A Commercial FCC License ...Or Your Money Back!
}

A Commercial FCC License is proof of electronics skill and knowledge. Many top jobs require it . . . every employer understands its significance. In your possession, an FCC Commercial Ticket stamps you as a man who knows and understands electronics theory ... a man who's ready for the high-paid, more challenging positions.
Cleveland Institute 'home study is far and away the quickest, most economical way to prepare for the FCC License examination. And that's why we can make this exclusive statement:

The training programs described above will prepare you for the FCC License specified. Should you fail to pass the FCC examination after completing the course, we will refund all tuition payments. You get an FCC License . . or your money back!
Before you turn this page, select the program that fits your career objective. Then, mark your selection on the

\section*{Cleveland Institute of Electronics \\ 1776 E. 17th Street, Dept. Ex-1 \\ Cleveland 14, Ohio \\  \\ Accredited Member}
coupon below and mail it to us today. We'll send you ... without obligation...complete details on our effective Cleveland Institute home study. Act NOW . . . and insure your future in electronics.

\section*{Mail Coupon TODAY For FREE Catalog}

\section*{Cleveland Instifute of Electronics \\ \section*{1776 E. 17th St., Dept. EX-1}}

Cleveland 14, Ohio
Pleage send FREE Career Information prepared to help me get ahead in Electronies, without further obligation. CHECK AREA OF MOST INTEREST -

Electronics Tectnology
Induatrial ElectroniceFirst Class FCC License Electronic Communications
\(\square\) Broadcast Engineeriug
\(\square\)
other

\section*{Your present occupatiom}
\[
\mathrm{Name} \quad \text { (please prinit) }
\]

Addrem
City__Zone__State___ EX-I
\(\qquad\)
\(\qquad\)

\section*{108 ELECTRONIC KITS}
\(\square\) STEREO \& MONO HI-FI \(\square\) TEST INSTRUMENTS
- ham gear - citizens transceivers
\(\square\) WALKIE-TALKIES TRANSISTOR RADIO
- All easy-to-build - with complete, step-by-step, beginner-tested pictorlal instructions
- All tremendously economical cost \(50 \%\) less than comparable wired 'units
- All professional quality uncompromisingly engineered


EICO Electronic Instrument Co., Inc. 3300 Northern Blvd., L.I.C. 1, N.Y. Please send FREE catalog and name of neighborhood dealer.

\section*{Name}
\(\qquad\)
Address \(\qquad\)


City \(\qquad\) Zone \(\qquad\) State \(\qquad\) RTE.63a 1
 Farta \(\$ 13.00\) Wired inmpletes. \(\$ 17.95\) Output 12/14 VDC@ @ A. Sizs: 51/2x \(81 / \frac{1}{2}\) g": Wt. 12 lhs. STK \# JN-igVIDCAA: IITT of J'arts . Wired (omplete. MAIL COUPON Address Dept. 20-Prices F.O.B.. Llma, FOR CATALOG!
Ohio-25\% Deposit on All C.O.D. Orders.
hio- \(25 \%\) Deposit on All C.O.D. Orders.

\section*{FATR BADIO SALユS 2133 EIIDA RD. - BOX \(1105 \cdot\) LIMA, OHIO}

FAIR RADIO SALES
Dept. 20-P. O. Box 1105 -Lima, Ohio-U.S.A
NAME
ADDRESS
CITY


\section*{EIECTROUICS IS HICHER INCOMH}

\section*{Prepare NOW!}
tarn your a. s. DEGREE IN 24 MOS. \(\lim ^{1 / 2}\)
DEMAND FOR ELECTRONIC ENGINEERING TECHNOLOGISTS EXCEEDS SUPPLY! Enroll with a nationallyrecognized lfader in electronics education. ECPD Accredited Technical Institute curricula in Electronic Engineering Tech nology and Commercial Broadcast Technology. Complete career preparation for booming fields of ELECTRONICS-COMMU. preparation for booming fields of ELECTRONICS-COMMUNOLOGY - COMPUTER PROGRAMMING. College level resident and home-study courses. Coeducational. Up-to-date laboratories feature IBM, BENDIX and UNIVAC electronic computers and data processing equipment SEND COUPON FOR COMPLETE CATALOG.


\section*{When Answering}

\section*{Advertisements Say}

\section*{You Saw If In}

RADIO-TV EXPERIMENTER


\section*{CET YOUR First Class Commercial F.C.C. LICENSE IN 12 WEERS!}

\section*{Is the course proven?}

A high percentage of our fulltime resident students get their 1st class licenses within 12 weeks from the time they start the course. Intensive FCC license training is our specialty - not just a sideline.

\section*{Is the course complete?}

The Grantham course covers all the required subject matter completely. Even though it is planned primarily to lead directily to a first class FCC license, it does this by TEACHING you electronics.

\section*{Is the course "padded"?}

The streamlined Grantham course is designed specifically to prepare you to pass certain FCC examinations. All of the instruction is presented with the FCC examinations in mind. If your main objective is an FCC license and a thorough understanding of basic electronics, you want a course that is right to the point - not a course which is "padded" to extend the length of time you're in school. The study of higher mathematics or receiver repair work is fine if your plans for the future include them, but they are net necessary to obtain an FCC license.

\section*{Is it a "coaching service"?}

Some schools and individuals offer a "coaching service" in FCC license preparation. The weakness of the "coaching service" method is that it presumes the student already has a knowledge of technical radio. On the other hand, the Grantham course "begins at the beginning" and progresses in logical order from one point to another. Every subject is oovered simply and in detail. The emphasis is on making the subject easy to understand. With each lesson, you receive an FCC type test so you can discover daily just which points you do not understand and clear them up as you go along.


\section*{Is the school accredited?}

Accreditation by the National Home Study Council is your assurance of quality and high standards. Grantham is accredited.

\section*{Is it a "memory course"?}

No doubt you've heard rumors about "memory courses" and "cram courses", offering "all the exact FCC questions." Ask anyone who has an FCC license if the necessary material can be memorized. Even if you had the exact exam questions and answers, it would be much more difficult to memorize this "meaningless" material than to learn to understand the subject. Choose the school that teaches you to thoroughly understand - choose Grantham School of Electronics.
the grantham fcc license Course in Communications Electronics is available by CORRESPONDENCE or in RESIDENT classes.

For further details concerning F C.C. licenses and our training, send for our FREE booklet

\section*{Grantham Schools}

1505 N. Wastern Are.
Los Angetes 27, Calial
(Phone: H0 7.7127) Seattle 4, Wash.
(Phone: MA 2.7227,

3123 cillham foad Kansas city s, Mo
Phane: JE 1-6320

821 - 19th Street, N.W. washington \(6,0 . C\). (Phone: ST 3.3614)

FIRST CLASS F.C.C. LICENSE IN 12 WEEKS Grantham resident schools are located in foup major cities - classes in F.C.C. license preparation are offered at all locations. New day classes begin every three months, and new evening classes begin four times a year.

MAIL COUPON NOW - NO SALESMAN WILL CALL \(\Rightarrow\)

Accredthed by the National Höme Study Council
(Mail in envelope or paste on pastal carl)
To: GRANTHAM SCHOOL OF ELECTRONICS NATIONAL HEADOUARTERS OFFICE
1505 N. Western Ave.n Hollywoed 27, Calif Gentlemen:
Pleose send me your free booklel kelling how I can get my cam mercial F.C.C. license quickly, I understand there is no obligation and no salesmon will call.

Nome
Age
Address
City \(\qquad\)
I om interested in:
Home Study, Resident Classes E3A

\section*{CITIZENS BAND SALE!!!}

UTICA TRANSCEIVERS
(TOWN and COUNTRY MC-27) Res. \(\$ 179.50\)
.SALE
\(\$ 119.95\)
\(\square\)
FANON-MASCO "WALKIE TALKIES" 9.transistor Deluxe Units with all ac.
cessories.
cessories. 2 for \(\$ 56.99\)
SALE
s28.99 \\ GIANT BASE STATION VALUE ! ! COMMAND 3-ELEMENT BEAM (Super III) PLUS CDR ANTENNA ROTATOR \(\$ 50,00\) Value \\ sale 34.98}
\(\square\) JAMES KNIGHTS CB CRYSTALS
    (Specify make. model and channel).
                    SALE
COMMAND GP- 1 GROUND PLANE ANTENNA.
COMMAND GP- 1 GROUND PLANE ANTENNA.
Solid Alum. ridids, heavy duty. Reg. \(\$ 16 \ldots\) SALE
                    \(\$ 1.99\)\(\$ 8.99\)COMMAND CB SILENCER KIT-Model SN-3able generator noise supuression kit: contains tune-suppressors, gen. eond feed.thrus) and distral
COMMAND \(3 \times\) LIMITER KIT
                    SALE
3 FILTERS (HI-PASS, LO.PASS, LINE)., SALE

\(\$ 4.99\)
\(\$ 3.99\)
SAVE ON ULTRA-LO-LOSS FOAM COAX CABLEIII
50 ft .-RGS8u coax Cable .... SALE 52.49
100 ft - RG58u Coax Cable .................... SALE \(\$ 2.49\)
    50 ft -RG8u Coax Cable ................ SALE \(\$ 3.99\)
100 ft .-RG8u Coax Cable . SALE \(\$ 4.95\)

Check iteme wanted. Return ad or order with eheck or money order under \(\$ 5.00\). Beams and \(102 \%\) whips service charge on Express. \(50 \%\) deposit on c.O. 0 . \({ }^{2}\)
- CB DEALERS: Write for Quantity prices!

GROVE ELECTRONIC SUPPLY COMPANY
4109 W. Belmont Avenue, Chicaso 41. Illinols
Rush items checked
Send FREE catalog
Addrest . . . . . . . . . . (please print)
. . . . . . . . ............
City . . . . . . . . . . . . . . . . . . . . Zone . . . . . state
Fill in coupon for a FREE One Year Subscription to OLSON ELECTRONICS Fantastic Bargain Packed Catalog - Unheard of LOW, LOW, WHOLESALE PRICES on Brand Name Speakers, Changers, Tubes, Tools, Hi-Fi's, Stereo Amps, Tuners, and other Bargains
NAME
ADDRESS
CITY \(\qquad\) ZONE STATE
If you have a friend interested in electronics send his name and address for a FREE subscription also.

OLSON ELECTRONICS INCORPORATED
528 S. Forge Street
Akron 8, Ohio

\section*{ON SALE NOW! at most newsstands}


\section*{Woodworkers Encyclopedia-618}

A must guide for every handyman working with wood. Over 42 heavily illustrated and detailed articles show you how to work with various kinds of woods to achieve professional results, with special sections devoted to the use of many types of tools as they apply to specific projects. Accurate and easy to follow how-to-do-it instructions for scores of different operations in the workshop. A few of the informative articles you'll enjoy reading and actually doing are:
```

- Radial.Arm Saw Savy
- Glues for Homecrafters
Safety Sticiks for Your Circular Saw
- Clamping Irregular Work
- Modern Multi-Purpose
Workbench
- Tricky Methods of Decorating Plywood
- Carying wood Mitchenware
- Mini-Turning on the Lathe
- Sewing Machlne Jigsaw Projects

```

Home Built Power Tools-619
A real money saving how to handbook that gives the home craftsman step-by-step instructions for making power tools from salvage, surplus and/or inexpensive items found around his workshop or in the supply store. Each project is illustrated with complete and accurate diagrams. A materials list is also provided to help you reduce building time and ensure a finished tool that will meet with all your requirements. A few of the power tool projects featured in this handbook are:
- Making Shaped Cutters from Steel
- Shop Bench Spot Welder
- Handy Cement Mixer
- Power Filing and Saber Sawing Machine
- Switches to Lock Powef Tools

Pick up a copy at your newsstand or send \(\$ 1.00\) to include postage and handling with coupon below


\section*{The Same School That Originated The RTS BUSINESS PLAN}

\section*{The Entire Course Is Made Up Of The Following: - 35 lessons covering basic AND INTERMEDIATE ELECTRONICS - 9 EQUIPMENT KITS COMPLETE WITH TUBES AND BATTERIES}
- SOldering iron
- 25 LESSORS COVERING THESE advance electronic subjects:
Thyratron Tubes - Semiconductors Electronic Symbols and Drawings Voltage -Regulators - ElectronicTimers - Control Systems - X -Rays Photoelectric Devices - Dielectric Heating - Geiger Counters - Pulse Circuitry - Clippers and Limiters. Multvibrators - Electronic Counters Radar - Magnetic Amplifiers - Analog. Computers. DC Amplifiers - Digital Computers - Storage Systems - Input and Output Devices. Servomechanisms Telemetering
- 60 EXAMINATIONS
- unlimited consultation service
- kit manuals
- diploma upon graduation

BASIC • INTERMEDIATE • ADVANCED
designed for the busy man of today
This is MODERN training for the MODERN man. You'll find no "horse and buggy" methods here. Every page of this streamlined course is devoted to important Electronics principles and practical projects. You'll be amazed how fast you grasp Basic Electronics the RTS way. RTS has combined modern THEORY and PRACTICE to make this the finest training program of its kind available!
SATISFIES NOVICE, TECHNICIAN OR HOBBYIST
Whether you're new to Bectronics or an old "pro," chances are you'll find this to be the ideal course for you. The novice will appreciate the completeness of the training. It starts with the most basic considerations, covering each important point thoroughly, yet concisely. The technician will enjoy the practical review of fundamentals and profit from the 25 advanced subjects covered
RTS Gives you "top mileage" For your training dollar
The price quoted below buys EVERYTHING - there are no extras to pay for. RTS has gone "al! out" to give you the best training value in America. Why pay hundreds of dollars for training such as wa otter when it's avail able for this LOW PRICE? If you can find a better training bargain... BUY IT!
CAN BE COMPLETED IN MONTHS INSTEAD OF YEARS
Some students will complete this course with "Je t-Like" speed but we allow up to two years if your circumstances require it. You study at your own rate. You are ENCOURAGED but not pushed. Youll find the lessons professionally written LET US SEND YOU ONE OF TMESE LESSONS ALONG with your career booklet so you cam see for yourself no obligation!


\section*{New Ram Jet Engine Burns Gasoline!} Powerful continuous
thrust for models:
boats, cars, planes.
No moving parts.
Easy to start. Runs on gas. About 6 -in, long. Com. © 50 plete. Only

\section*{Powerful Electric Generator}

Cost U. S. Gov't \(\$ 20.00\) ! While They Last \(\$ 3.95\)-Brand Newl Cenerates Up To 100 Volts. to ring beds. light up lights as a medical battery, dellver territic electric shock as joke, classroom uses, etc. Hand wheel drive. Mate. Hand erank or gear companles. Powerful ainico magnets falone worth more than total cost). Ready for use.

Underwater Electronic Detector Gov"t Surplus. Cost \(\$ 200.00\) : Special \(\$ 7.95\) Hrand new. Use an detector or use parts fo Detroti. Only. \(\$ 7.95\)
POWERFUL NEW INVENTION, UNLY 2" LONG SHOOTS THRU 100 PAGES-THISBOOK!


MAKE THIS TEST
Load your 'BB Shot' and fire against this magazine. Notice that It drives in diameter more than 100 pages. Though only \(2^{\prime \prime}\) long \(x 1^{1 \prime}\) accuracy. Use it for targets, pests and hunting. Sclentifically deslgned for high power, operating ease and safety.
FREE! Get the 'BB Shot' now-we'll include an extra Velocity FNEE: Cone and FREE Target, BB's and Automatic BB Dispenser cuarantee. Not only \(\$ 1.98 \mathrm{ppd}\). 3 for \(\$ 5.00 \mathrm{ppd}\). Money GRAYSON PROD., INC Dept D-19, 210 Fifth Ave N Y 10 , y
MONEY-BACK GUARANTEE
, Dept. D-19, 210Fifth Ave., N
Address
City ............. State.......


\section*{LEARN ELECTRONICS with a TEACHING MACHINE}

You learn easily and quickly, step by step, at home, at your own pace. Teaching Machines and Programed Learning are the most important advances in educational techniques for 60 years or more. Said to be: 'The most signifleant aid to learning since the invention of movable type.
than 25 . established over a quarter-century ago, has more echnical institute to offer homes. Now, A.l.E.T, is the firs Machines and Programed Learning.

LABORATORY KITS. Practical, learn-by-doing training projects include test equipment useful after graduation

EXCELLENT CAREERS IN THE ELECTRONICS INDUSTRY AWAIT TRANED MEN. Qualify for a career in electronic in the Best, Fastest, Most Effcient way possible, at home in your spare time. Write now for full details. TUTORMATIC DIVISION
american institute of engineering \& technology 1135-45 W. Fullerton Pkwy. . Chicago 14. Illinois
\(\underbrace{\text { secid }}_{\substack{\text { surplus }}}\) Sun Battery \& Photocell \({ }^{2}\) sion


Brand new. Save \(300 \%\). Genulne
Gelenium self-generaling gelenium self-generating electrie cell. Comverts bratnd into electric current. Use for experiments. tricks, operate radios \(\mathrm{K}_{\mathrm{h}} \mathrm{el}\), deviees, open doors, counting \& fimUie individually or in serles for alded power. Speciai Dffer to NEW CUSTOMERS. 2 Platocells \& new catalog
of 2500 novelties. gadgels, fummakers for only \(\$ 1.00\). Johnson Smith \& Co. Depl, 230
Hypnotize Fast with Hypno-Matic


Amazing Hypno.Matic invention onty \(\$ 1.00\). Fyeeatching nypnotic dewice operates on rolating tion ror QUICK HYPNOTIC TGANCE. EDBHy concealed in oorket or hand. Conerol people during smell \& arterwards, too! With 2 books on hyproo lism; uses \& dangers, posthypnotic control, sell. learning. entertaining stunts habits \(\&\) easiey if not \(100 \%\) pleased. Complete Only \(\$ 1.00\)

Johnson Smith \& Co., Dept. 230
Detrolt 7, Michlgan

\section*{SIX TRANSISTOR RECEIVER KIT}

Critical resistors, condensers and transistors are pre-mounted. Osclllator and IF cans come factory aligned so no equipment is needed for alignment Powerful \(1 / 4\) watt output. Circuit is designed for long-life battery operation. Comes complete with 9 volt battery, earphone and leather carrying case Schematic and parts layout diagram included Only \(\$ 18.95\) postpaid. Send check or money order


TV REPAIR BOOKLET-FREE
To Prospective Customers for Tubes and Parts "Professional TV-Radio Servicing for Everyone" Reveals tricks of the trade. Shows how anyone can quickly diagnose any trouble-professionally. easily, accurately. No hit or miss, no guess work. Booklet is yours for the asking, No strings attached, no gimmicks.
P CENTURY ELECTRONICS, Dept. RT-1
Hicksville, L. I., N. Y.
TEN
 MOVIES
FANTASTIC OFFER
ALL TEN MOVIES ALL TEN MOVIES (16mm-\$4)
The movie buy of a lifelimel Ten subiects, all different, brand new and thrilling, and oll yours far only 20 c each. You must be delighted of your money backl Rush \$2 (cosh, check or money order) to: SENSATIONAL MOVIE OFFER

Box 69856, Depl. G-13 West Hollywood 69, Calif.

\section*{EXPERIMENTERS • AMATEURS • HOBBYISTS}

Save real money on radlo parts. Write today
for blg free catalog of government surplus electronic materials, many items priced at \(90 \%\) below list. All are new unless otherwise indicated. Here's a sample:

JOE PALMER
SEND FOR CATALOG TODAY
P.O. BOX 6188 CCC
SACRAMENTO, CALIFORNIA

VACUUM TUBE VOLT METERKIT ( 8 -INCH METER)RMS and p. to p. scale. Input imped. 12.2 megs. Professional performance and appearance. Kit: \(\$ 31.95\)

"CUSTOM 70" TV SET KIT-Excellent sensitivity. Transformer power supply; 3 stages of IF. In cludes slimline cabinet, 19 inch picture tube-everything. NOT a portable. Nit Price: \(\$ 135.00\)

TRANSISTOR RA. DIO KIT-Superb tone and sensitivity. No delicate printed circuits. Attractive, durable case. All U.S. made parts. Kit: \(\mathbf{\$ 2 5 . 5 0}\)

5.INCH WIDE BAND OSCILLOSCOPE OIT-For black-white, KIT-For black-whit color, AM-FM and electronic applications. High intensity trace. Extremely stable sync. Advanced design.

Kit: \(\$ 89.50\)
Assembled: \(\$ 139.50\)

\section*{from CONAR}

Get your FREE 1963 CATALOG

It's full of exciting new electronic kits of highest quality. Many items available in both kit or assembled form. Home entertainment items that make perfect family gifts or test instruments for the technician who appreciates quality and high performance. Tools, too, to make your work easier, faster. And you'll like the reasonable prices and convenient payment plans which make CONAR Kits easy to own. Mail coupon for new 1963 Catalog now.


\section*{GUARAMTEE} Parts and performance guaranteed by NRInearly 50 years of pioneering in Electronics.

\section*{CONAR}

3939 Wisconsin Ave., N.W.
AP 3C
Washington 16, D.C.
Send me your new 1963 CONAR KIT CATALOG
Name
Address
City \(\qquad\) Zone \(\qquad\) State
\(\qquad\)
——
division of NATIONAL RADIO INSTITUTE
Mail this Coupon

\section*{ELECTRONIC SURPLUS BARGAINS}

100 Disc Ceramic Cond. Asstd. ................. 1.00
CK-722 Transistors . . . . . . . ................. 6/1.00
Silicon Diodes 500 ma. 400PIV..............3/1.00
Ptd. Circuit Boards Copper Laminate \(3 \times 10 \ldots 8 / 1.00\)
Germ. Rect. 5 amp 200 PIV.
1.00

Snooperscope tube see in dark \#6032........ 6.50
SNIPERSCOPE M3 SEE IN DARK
Ceramic Magnets, stronger than Alnico ...... 12/1.00
Infra Red filter \(51 / 2\) inch.
1.00

K-25 Camera, Govt. cost \(\$ 1,200\). ............... . 49.00
IBM Modular Stack (computer)................... 1.00
IBM Memory plane, 200 bit. .................... 5.00
IBM Memory plane, 8,000 bit
15.00

Transistor Battery' Eliminator Kit .75
Miniature Mike Buttons
4/1.00
Nickel Cadmism btry. 1.2v. 4 amp. hr............. 1.95
Philco SB-100 Type Osc. Transistor.
3/2.00
Periscope Prism
2/1.75
Treasure Hunters: PRS 3 metal locator, with btry.
45.00

28 volt DC 4 amp. power supply, operates from
\(115 v 60\) cycle. Unused surplus, govt. cost \(\$ 550\)
12.50

Solar Bank kit five cells with instructions...... \(\$ 1.50\)
All materlal \(F O B\) Lynn, Mass. (you pay shipping). Minimum order \(\$ 5.00\). These are a few selected bargains from our glant 60 page catalog of Government Surplus Material. Send \(10 r\) coin or stamps for your illustrated catalog.

JOHN MESHNA, JR.
. 15 Allerton St.
Lynn, Mass.



To guide you to a
successful future in
ELECTRONICS
RADIO-TV COMPUTERS
ELECTRICAL ENGINEERING

This interesting pictorial booklet tells you how you can prepare for a dynamic career as an Electrical Engineer or Engineering Technician in many exciting, growing fields:

\section*{MISSILES • AVIONICS • AUTOMATION SALES DEVELOPMENT ELECTRICAL POWER • ROCKETRY RADAR - RESEARCH}

Get all the facts about job opportunities, length of study, courses offered, degrees you can earn, scholarships, part-time work - as well as pictures of the Milwaukee School of Engineering's educational and recreational facilities. No obligation - it's yours free.

\section*{MILWAUKEE SCHOOL OF ENGINEERING}

\section*{MALL COUPON TODAY!}

\footnotetext{
Milwoukee School of Engineering
Depf. RTX.163 1025 N. Milwaukee Sp., Milwaukee, Wis. Please send FREE ''Your Career' ' booklet
I'm interested in
\(\square\) Electronics
\(\square\) Radio-TV
\(\square\) Computers \(\square\) Electrical Engineering \(\square\) Mechanical Engineering Name. \(\qquad\) Age. \(\qquad\)
Address.
PLEASE PRINT

City \(\qquad\) Zone State
I I'm eligible for veterans education benefits Discharge date.
}

\title{
A MUST TOOL FOR EVERY HOME CRAFTSMAN
}

\section*{SCIENCE and MECHANICS JOB TESTED}

This specially designed S\&M Transfer Tool is a "must" for every home craftsman. Now, you can trace your fullsize Craft Prints directly onto the wood-faster, easier, and more accurately, too.

The toothed wheel perforates the Craft Print and outlines your cutting edge in a series of pin-point marks. The S\&M Transfer Tool is easily guided along any line-straight or curved.
No craftsman can afford to be without a Transfer Tool. You shouldn't be without it another day. Order your S\&M Transfer Tool now-use the coupon below. Only \$2 each, postpaid.


\section*{SCIENCE and MECHANICS Product Division}

\author{
505 Park Avenue / New York 22, N. Y.
}

Enclosed is my payment of \(\$\) \(\qquad\) Please send me \(\qquad\) S\&M Transfer Tools. (\$2.00 each in U.S.A., \(\$ 2.25\) in Canada and all other countries.)



\section*{You Can PREPARE NOW For ELECTRONICS TECHNICIAN TELEVISION BROADCASTING F. C. C. LICENSE}

No previous technical experience or advanced education needed!

Now is the time to learn a skill that can put you ahead. In either civilian or military life, the trained technician is in demand for the better jobs-the higher ratings.
Opportunities are great in many Electronic fields.
Our up-to-the-minute training prepares you at home, in your spare time. Covers basic and advanced electronics, and trains you for FCC license exam. Modern electronic project kits for home assembly are provided.
FREE SAMPLE LESSONS: We will send you Lessons 1 and 2, without cost or obligation. See for yourself how quickly you grasp elec. tronic principles.
You can get all the facts on our training program, and information about age and requirements necessary for employment as an Elec. tronics Technician. Mail the coupon or write to ELECTRONICS DIVISION, Northwest Schools, Dept. NX-1E, 1221 N. W. 21st Ave., Portland 9, Oregon.

\section*{Send today for your FREE LESSON}

ELECTRONICS DIVISION-Northwest Schools
DEPT. NX-1E, 1221 N. W. 21 st Ave., Portand 9, Ore. Please send me, without obligation, your FREE LES. SONS and all the facts on the training checked below:
\(\qquad\) \(\square\) F.C.C. Lic. Prep.
Name
Address.
City \(\qquad\) State

Nearest Phone \(\qquad\)

\section*{Coming in the Feb. Issue}


\section*{What Happened to the Atomic Cannon?}

\section*{Fact or Fiction...}

Robots have proven they are better than humans in exploring space and duplicating man's physical actions in research and industry. Therefore, it's only logical he become part of man's family and help raise his children.

\section*{Atomic Artillery...}

These technically "obsolete" atomic cannons facing East out of West Germany may be the reason why we are having a war of words, not armament. Each cannon, as you can see in the article, is precision built to deliver optimum devastation with bullseye accuracy.

\section*{Weapons Against Crime...}

Is it possible that our police departments are using outdated, antiquated weapons against a modern crime arsenal? 'Is the Police Revolver Outmoded?' gives the hardhitting facts.
"The monthly magazine for craftsmen"

\section*{Do-it-yourselfers will also be interested in:}
- Knowing what adjustments and repairs to make when your power steering starts giving you trouble so you can save by not having to pay a big repair bill.
- An informative article that gives you tips and graphic illustrations on how to make bevel cuts for turning corners.
- Techniques used to plane lumber to size in your own workshop so you can always be assured of the right size.

On Sule December 27th AT AIL NEWSSTANDS

For Information on Classified ads-to be included in our next RADIO-TV EXPERIMENTER HANDBOOK and other Handbooks-write C, D. Wilson, Mgr., Classified Advertising, SCIENCE and MECHANICS HANDBOOK DEPT., 505 Park Ave., Now York 22, N. Y.

\section*{ADDITIONAL INCOME}

MAKE \$25-50 week, clippine newspaper ltems for publishers. Some clippings worth 5.00 each. Particulars iree. National. Knickerbocker Station. New York 2 .

CENTRAL Nevads 10 acres Includins minerals. \(\$ 30.00\) down. \(\$ 10.00\) monthly. \(\$ 300.00\) tull price. Owner. Box 2372. Van Nuys. Callf.
\(\$ 100\) WEEKLY possible. Complle malling lists and address envelopes for advertisers. Home-spare time. Particulars free. Natlonal Service, 81 . Enlckerbocker Sta. New York City 3.

ATHLETIC EQUIPMENT \& BODY BUILDING EQUIPMENT

WEIGRT Exercisins Equipment. Pree uterature. Ed Jubinvile, Holyoke, Mass

\section*{AUTHOR'S SERVICE}

LOOKING FOR A Publisher? Learn how we publish. promote. distribute your book. Free Booklet H -1. Vantage Press, 120 West 31st. New York 1.

PUBLISH your book! Join our successIul authors: publicity sadvertising promotion. beautiful books. All subjects invited Send for free sppraisal and detalled booklet. Carlton Press, Dept. SMA

\section*{AUTOMOBILES E MIDGET CARS}

AUTOMOBILE Catalors, photos. An= tique. modern. Hobby Club. Information Free. Enthuslasts, Box 51 G , Mi. Clemens. Michigan.

\section*{BUSINESS OPPORTUNITIES}

ASSEMBLE Artheial Lures at home for stores. Materials supplied Free. Protiable! Write: Lures, Ft. Walton Beach. Fla.

PAWNBROKER. Be one. I'll teach you. Amazing pronts. Pawnbroker Thayer. Amath. Maine.

MAEE Mall Order pay. Get "How To Write a Classined Ad That Pulls." This Write a Classined Ad That Pams. This handboot cludes certincate worth \(\$ 2,00\) toward clascludes certincate worth 8,00 toward clatsifed ad in S \& M . Send 81.00 to C . D. Wisen. Sew Yory 23. N. Y.

\section*{BUY IT WHOLESALE}
"PRES Merchendise!" 350,000 Items "Wholesale!" Goldmine. 240-S. Planete. rlum Station, New York City 24.

\section*{CAMERA \& PHOTO SUPPLIES}

\footnotetext{
AT last! Bulld you own supersensitive Heht meter from complete kit with casy to follow instructions. Uses newest cadto followinstructions. ses newest cad mium sulide light cell. shows ASA speeds .3 to 25.000 . F stops .7 to 90 measures accurately moonlight to bright sunilght. Send 19.95 to Kit Division, science and N. Y. Money completely refunded if 22. returned within ten days for any reason.
}

\section*{DO IT YOURSELF}

PIREPLACE in your home-simply and economically done. Install it yourself with plans in our Home Modernization Hand book \(\# 615\). 35 Do-it-yoursell improve ments. A real help in keeping house and garage in top shape. send 81.00 to Hand book Div.. Science and Mechanics. 505 Park Ave.. New York 22. N. Y.

\section*{EARTHWORMS}

BIG Money Raising Fishworms and crickets. Free Literature. Carter Farm-O. Plains. Georis.
ELECTRICAL EQUIPMENT \& SUPPLIES
COMPLETE kit with easy to follow instructions for building a high precision all purpose tachometer. 3 ranges. Measures speeds on tape recorders. lathes cutting tools. auto ensines. model plane engines, many more uses. Only 16.95 . If not completely satisned. kits may be returned within ten days for a complete refund. Kit Division. Science and Mechanics. 505 Park Ave., New York 22, N. Y.

\section*{EMPLOYMENT INFORMATION}

OVERSEAS Jobs, List \$1.00. Universal. O. Box 682, (A). Kenosha. Wisc.

FOR INVENTORS
PATENT Searches- 48 hour sirmsil service. 86.00 including nearest patent coples. More than 200 resistered patent attorneys have used my service. For Free Invention protection forms and sample patent application, write Miss Ann Hastinge, P.O. Box 176. Washington 4, D. C.
THOUSANDS of expert answers to your patent questions. 160 pages covering marketing, atherney's iee, clinics. searches, many other subjects., Send \(\$ 1.00\) for "Inventor's Handbook", " 600 to Handbook Div., Sclence and Mechanics. 505 Park Ave.. New Yors 22.
PATENT Searches. including coples of related U. 8. patents. 8.00 . Inventors. attornoys, manufecturers use my "Worldwide" airmail service. "Invention Racord" orm and Information Every Inventor Needs, sent free. Mise Heyward, 1029

\section*{HOME WORKSHOP SUPPLIES}

ANSWERS to your woodworting problem? We've got them in Woodworker's encyclopedis No. 618. How the pros use tools. A must book. Send \(\$ 1\) to science and Mechanics. 505 Park Ave., New York 22. New York

\section*{HYPNOTISM}

NEW concept teaches you self-hypnosis quickly! Free 山iterature. Smith-McXinley. Box 3038, San Bernardino, Callf.

MATHEMATICS
FUTURE System of Mathematics, Guaranteed. \$1.00. Knowledge. 2900-9th St. anteed. \$1.00. Kno

\section*{MISCELLANEOUS}

CATALOG of all Sclence and Mechanics Craftprints. Send 25e to cover postage and Handiling to Craftprint Div. Bcience and

\section*{MONEYMAKING OPPORTUNITIES}

INCOME FTom Oll Can End Your Toll! Free Book. Maps! National Petroleum. Pan-American Buildine-SM, Mami 3i, Ploride.
MUSIC \& MUSICAL INSTRUMENTS
PIANO Technic Simplified. 81.25. Walter Eazaks. 234 East 58th Street, New York 22. STEREO Music Center-beautifully made from complete step-by-step plans in Purniture Handbook \#816A. 40 Useful projects for attractive additions in every room in the house. Send si.00 to MandPark Ave.. New York 22, N. Y.

\section*{PATENT SERYICE}

PATENT Searches-48 hour alrmal service. 6.00 . including nearest patent coples. More than 200 remistered paten attorneys have used my service. For Free invention protection forms and sample patent application. write Miss Ann Hestinge, P.O. Box 176, Washington i. District of Columbie.

NO Letter to write! Special "Invention For Sale" form presents your Idee to buyers. 6 for 100 science and Mechanics. Craft Print Div., 805 Park Ave., New Yor 22. New York.

PETS-DOGS, BIRDS, RABBITS, HAMSTERS, ETC.

MAEE ble money ralsine rebbits for us Information 254. Eeeney Brothers, New Freedom, Penna

PHOTO-FINISHING, ETC.
A Free Roll of Kodsk Film with each developing and printing Guaranteed Quality send for free mailers. Econom Photo Service, Dept. S. P. O. Box 11 Albany. New York.

\section*{POWER TOOLS}

HOME-BUILT Power Tools No. 618 shows you how to make 23 practical attachments. Also 17 complete tool projects Real chalienge to mill craftamen. Bend to Sclence and Mechanics. 505 Park Ave. New YorI 22. N. Y.

PRINTING, MIMEOGRAPHING \& MULTIGRAPHING
ECONOMCICAL Printing. Business, Personal. Free Catalog. Golden Glades. Box 64-18R. Miam! 64. Fla.

\section*{RADIO \& TELEVISION}

GOVERNMENT surplus receivers. transmitters. Enooperscopes. Catalor 10 Meshns, Malden 48. Mass.

CONVERT any Television to supersensitive. Big-Screen Oscilloscope. No electronic experience necessary. Only mino changes required. Illustrated plans \(\$ 2.00\) Relco, Dept. TV, Box 10563, Houston 18. Rexas.
Tent

\section*{START YOUR OWN BUSINESS}

SERVICE Business-Everyone Hkes to rennish furniture but hates removing old niakes. We have ploneered the stripping business and helped over 60 men become independent using our exclusive process. For brochure write Bix. Boz 8719. Kanses City 14. Mo.


\section*{Low Cost} PHOTO LIGHTS

\author{
Voltage booster operates common lamps as photofloods for color
}

\author{
By BRICE WARD
}

THE common household light bulb is designed to run on 120 volts, but feed it higher voltage and you've got a lamp that burns like an expensive photolamp at a fraction of the cost.

If you live where the power company supplies free exchange bulbs, you can save enough to pay for a booster in a few months,

Cameraman shoats color portrait using studio booster. A combination of 50 , 100 and 150 watt house lamps gives him well balanced main light, side lights and background lights.
and best of all, you'll never be unable to shoot just because you burnt out your last photoflood. You can always get common houselamps at the corner drugstore, but you may not be able to get floods.

Of course, lamp life is reduced. A household bulb is designed to last several thousand hours at ordinary voltage. At the higher voltages used in this booster, the same lamp will last as long as a photoflood, three or four hours. By using the warmup circuit every time, and being careful not to jar the lamps while they are burning, you can extend lamp life considerably. Also, the booster enables you to use a variety of lamp sizes, shapes, and colors not available in photofloods to create special effects for color portraits, or special illustrative shots.
Two circuits are shown (Figs. 7 and 8). The portable booster will drive a 100 watt lamp (or two 50 watt lamps) to provide the equivalent of 300 watts of photoflood power. It has a \(50 \%\) duty cycle and can be run up to half an hour, provided that you allow equal time for cooling, or add vents and a fan. Cost of parts as shown is less than \(\$ 15.00\). The studio unit will handle a load of 500 watts, to produce lighting equal to four \#2 photofloods. Parts should cost no more than \(\$ 29.00\).
The Portable Booster fits into a \(3 \times 4 \times 5\) in. aluminum minibox. Use a sharp scriber

The studio unit, shown withoul metol grill cover has a main switch, and two slide switches. To use the unif, you warm the lamps a few moments, switch to OPERATE, and then to the 3200 ar 3250 K settings. Outlets are on the rear.
to lay out the panel. Drill inside your layout lines making a line of holes as close together as possible. Break out the center and file the edges of the holes smooth. Then use the outlets and switches as templates to drill the mounting holes. A Keystone \#139 battery holder acts as a heat sink for the rectifiers, and makes them easy to hook up. Enlarge the battery holder mounting holes to \(3 / 16-\mathrm{in}\). Then mount the rectifiers. Make sure the battery clip fits snugly around the rectifier body, and that the rectifier shoulders are tight against the edge of the clip.
One rectifier, the MR-326 has a cathode-to-

\title{
MATERIALS LISTPORTABLE BOOSTER
}

\author{
\(20 \mathrm{mfd}, 500\) volt capacitors, Mallory type 83, Allied \#17L246 \(10 \mathrm{mfd}, 500\) volt capacitors. Maltory type 81, Alled \#17L245 \\ heat sink (battery box) Keystone \#139, Allied \#54J042 \\ chassis mounting sockets, Cinch-Jones \#2R2, Allied \#40H830 \\ \# Allied No.'s refer to catalog of Allied Radio Corporation, 100 N. \\ Amt. \\ Size and Description rectifier, Motorola MR.326, 18 amp. \\ rectifier, Motorola MR-326R, 18 amp . \\ DPST switches, type SW325, Alled \#358920 \#6 fiber washers, Allied \#42N771 \\ line cord, Belden 17126S, Allied \#49T211 aluminum minibox, Bud CU-2105•A, Allied \#80P397 Western Avenue, Chicago 80, III.
}

\section*{MATERIALS LISTSTUDIO BOOSTER}


Ant.
Size and Description
4200 mfd 150 volt capacitors, Mallory type 496, Allied \#17L519
2 rectifiers. Motorola MR326
3250 ohm. 200 watt resistof, Ohmite Dividohm, Allied \#1MM830
6 extra sliders for above, Allied \#75M882
23 PDT switches, Continental-Wirt SW369. Allied \#358922
1 SPST toggle switch, Arrow-Hart and Hegeman 82601, 15 amp, Allied \#338837
3 chassis mounting ac sockets, Cinch-Jones, 282, Allied \#40H830
double fuse clip, Littelfuse 357002, Allied \#52B297
Drake Postlite neon-indicator, Allied \#78E062
8 amp 3AG fuses, Allied \#52B248
\(1 \quad 12 \times 7 \times 4^{\prime \prime}\) Bud Minibox case, \#CU-2111-A, Allied \#80P353
1 line cord, 6 foot, Belden 17126S, Allied \#49T211
Allied numbers refer to stock numbers in Allied Catalog \#210A
case connection, while the MR-326R has anode connected to case. These connections are made at the clip and through the clip to the battery box frame. Since this clip is electrically hot, the battery box must be insulated from the case by mounting on spacers and washers.

The rest of the wiring is easy-just make sure that the capacitor

The portable booster drives two 50 watt lamps. The circuit works well on movie light bars. Because the capacitors carry a heavy load, duly cycle is 50 percent.



Inside the portable case, arrow shows power rectifiers mounted in battery clip used as heat sink. Capacitors are taped in place after assembly.
plus leads connect to the MR-326R center lead.

Operation. On low setting, run your lamps only a few minutes. The lowest-light output settings put the greatest load on the capacitors. The best way to get maximum lamp life, and to prevent blowing a capacitor is to use 5 to 10 secord pauses at the low positions, just enough time to warm the lamps before applying the full voltage. The portable unit uses an unusual circuit principle, that of overloading a voltage doubler to obtain voltage control. Since doubler circuits usually have very poor regulation characteristics, voltage control can be obtained by reducing the capacitance below a certain critical value.

Capacitance of 20 mfd . in each leg with the 100 watt load effectively holds voltage down to about 120 volts. Throwing in the additional 10 mfd . per leg raises the voltage to 165 volts. Add another 10 mfd . capacitor per leg, and you have 185 volts for the \(3450^{\circ} \mathrm{K}\) light output. Because these capacitors are just right for the rated load of 100 watts, no attempt should be made to change lamp size. This would affect the output voltages.
The Studio Unit, unlike the portable boost-



Studio unit is easy 10 wire. Arrow shows rectifiers mounted on aluminum heat sink bracket. Capacitor polarity is imporiant and must be correct. For heavy duty use, add a small fan and ventilating holes.

er can be used with various combinations of bulbs, because it is a more standard voltage doubler circuit and is designed for optimum operation with no excess load on the capacitors. Three large bleeder resistors (Fig. 2) control the output voltages and kill un-needed power. During the operation, these bleeders will get hot enough to burn the hands. They should be covered at all times with screening on a metal frame. The entire unit should be cooled with a fan (see Materials List) if you plan to use the booster for long shooting sessions. Construction is similar to the small unit. Mount the parts on a \(12 \times 7 \times 4\)-in. Minibox. Instead of the battery clip
mounting, press fit the rectifiers into an aluminum plate (Fig. 6) to get better heat dissipation. In this circuit, the rectifiers carry almost half the full-rated current, and thus must have more adequate cooling unless the booster is always used on very short duty
 cycles.

With all wiring complete and checked, set the taps on the resistors in the approximate positions as shown in Fig. 2. Connect your lamps, the same total wattage that will normally be used, and measure the voltage at each tap with a voltmeter.

Tap \#1 on each resistor should read 120 volts with the switch in the warm-up position. Tap \#2 on each resistor should read 160 volts with the first switch in the operate position and the second switch set on 3200 K . Tap \#3 on each resistor should read 185 volts in the operate and 3450 position. These voltage settings are approximate. Advanced professional photographers will want to
check light output with an accurate color temperature meter.

Whenever you adjust these taps, be sure that all power is off including the wall plug, and that the capacitors are discharged. Use a pair of test leads and a resistor to discharge the capacitors. Then loosen the screw on the resistor's tap ring until it is completely free and move in the desired direction. Retighten and check voltage, repeating this procedure until the voltages are correct.

Usually, satin finished aluminum produces the best light for color. The reflecting surface should be smooth, and neutral in color.

\section*{Paint Phone Plug Prongs}

- When an ear-plug type transistor radio earphone operates intermittently, check the plug contacts that fit into the earphone. The tiny prongs may not be making contact inside the phone. A small amount of printed circuit silver paint daubed on them tightens and improves electrical contact. Solder tinning the prongs is almost impossible without melting the plastic plug insulator.-John A. Сомятоск.

Flexible Prod Finger Guards

- There's no radio-electronics technician who hasn't at one time or another let his fingers get too close to test-prod tips. You can forget the dangers of such shocking experiences by punching holes in small rubber suction cups and slipping them over your test-prod tips as shown. Because these guards are flexible, you will have no trouble putting the prods down in cramped wiring and touching test points.-John A. Сомstock.

\section*{Build a Power Distribution Center}
and put your entire ham shack to bed with one flip of a swirch

\author{
By HOWARD S. PYLE, W70E
}


HOW many times have you groped for this and that switch at the end of a long evening of ham activity, dragged your weary bones to your pallet and, the next day, found that you had turned off the transmitter the night before, but left your Conelrad unit and receiver merrily drawing juice to heat your shack? Too many times, we'll bet!

Why don't you spend a couple of hours to
fix yourself up with a power distribution center, which will assure you at bedtime that the mere flick of one switch puts you in the clear for an undisturbed night's sleep?

This is not a major project, but it does provide you with a convenience which you'll wonder how you did without. At the same time, it gives you a central unit into which you can plug all of your ham gear, knowing


Rear view of power distribution center. If additional outlets are desired, slight relocation of the clock fuse and ac cord entrance will provide space for them.

that at the end of a session, the mere flip of a switch takes you "off the air" completely. It also eliminates the monkey-business of a number of straggling ac cords running to the most convenient outlet plus maybe a few 'cube-taps' to provide the additional ac combinations which you need.

You can accomplish all of this easily and simply by providing a central point to which your ac can run from every single piece of equipment in your shack. Just one main switch will kill every individual circuit in connection with your ham activities except, perhaps, your electric clock.

Simplicity of Construction. If you have been able to pass an examination for a ham license, you should be able to figure this project out by examining the schematic diagram. Actually, all that you have to keep in mind is that you want individual switching and fusing of each piece of equipment which you propose to use, plus the ability to switch them all off by means of one switch. If you use an electric clock, as the author did, you will naturally want to eliminate the clock from main switch control so that it will continue running all day. Aside from that, you
are faced with a most simple and conventional design problem followed by a bit of mechanical work and some elementary wiring.

The unit illustrated here represents that which the author felt was adequate for his requirements. They were simple, involving only control of the ac supply to a receiver, transmitter, and a Conelrad monitor.

Some readers may even question the necessity for switching the Conelrad unit, using the argument that such an item is a necessity only when the ham station is in a position to transmit signals on the air. This, then, would

\footnotetext{
MATERIALS LIST-POWER DISTRIBUTION CENTER Desig.

Description
PL1, PL2, PL3, PL4 pilot light holder (Allied 52E545)
S1, S2, S3, S4 bat handled topgle switch (Allied 34B647)
F1, F2, F3, F4, F5 insert fuse holder, Buss HKP (Allied
T1
538475)
transiormer, Triad F-14X (Allied 64G954)
ACP \(6 \mathrm{ft} . \quad 40 \mathrm{H} 677\) ) ac cord and plug (Allied 49T230)
CL
clock
rubber feet, rubber prommet for ac cord,
decals for lettering, LBM chassis box \#144
or equivalent
The above materials can be purchased from Allied Radio Corp., 100 N. Western, Chicago
80 . III.
}

lead to the natural assumption that the Conelrad monitor could well be wired in parallel with the transmitter ac supply source, thereby eliminating one switch, the ac outlet, and the pilot light combination from the circuit.

To be sure, this is perfectly acceptable. But in the author's case it was desirable to have the Conelrad monitor merely as a broadcast receiver with which to listen to news and entertainment while working around the shack or on the adjacent work bench, without the transmitter, receiver, or other accessories being activated. The choice is yours. Determine what your own individual requirements are, and then design around them. For example, you may already have an adequate clock (remember, FCC insists that you keep an accurately timed \(\log\) ). If so, you need not consider such as part of your distribution center. Instead, use the space intended for a clock for extra switches, fuses, and pilot lights for additional equipment.

We are attempting to supply here, both
from the standpoint of mechanical drilling dimensions and schematic wiring, what the author chose for his own modest ham station. You may need several additional circuits, both 117 -volt and 6.3 -volt ac, with their related pilot lights, switches and fuses, if your station equipment embraces other apparatus such as an external modulator, a self-powered VFO, maybe a coaxial relay or two. That is where the design problem rests entirely with you. What you do with it in the way of expansion, and what have you, is "your baby."

We might mention, too, that you are by no means limited to the parts specified in the materials list. They happen to be those chosen by the author, and proved to be entirely adequate and satisfactory. Maybe your own "junk-box" or some other available source of supply can produce equivalent items which you can well use. If so, use them. The real measure of a good ham is the extent to which he can bring his imagination, ingenuity, and resourcefulness into play.


\section*{Add parts until you've built}

\section*{Space Station}

\section*{-Super Workbench}

\author{
for Your Shop
}

\author{
By JAMES JOSEPH
}

SPACE engineers have come down to Earth to hand the home craftsman an out-of-this-world workbench.

Dubbed Space Station by its designers, space-minded (and space-saving) engineers at Hughes Aircraft Co., this compact, first-of-itskind workbench begins with a basic work table, adds more than 30 bolt-on bins, shelves, jigs, and fixtures that put hundreds of parts and scores of tools within finger's reach, and converts in a jiffy to such specialized homecrafts as electronics, model-making, gemmology, or wookworking.
Electronics. Fitted for the hobbyist or professional repairman, Space Station racks an array of miniature parts-bins and swivel cups (small, removable plastic "pigeon-holes") that hold upwards of 350 different parts. There's also a 110 -volt outlet for your soldering iron, plus special reel fixtures that hold spooled wire or solder. Built into the bench are a compartmented "wire" box that holds various sizes of most-used wire and a viselike jig designed to support at convenient work level a single electronic circuit board or an entire chassis.
Model-Making. To quick-switch from electronics to modeling, simply substitute a slip-in formica work surface for the electronic holding-jig and clip a bottle rack to the basic bench's angle-iron superstructure. Result: Neatly stacked and ready to use are your liquid essentials-lacquer, solvents, plastic


Here's a version of the Space Station as assembled by an electronic hobbyist. Note wire box at left, swivel parts bins, spools for solder and wire.
cement, and dope.
Gemmology. Gem-craftsmen need light, and you get it from a quickly attached, nonglare, overhead fluorescent fixture that bathes the bench's work surface with 160 footcandles of illumination.

General Fix-It Bench. For the household handyman "specialized" to handle all home fix-it chores, Space Station's slide-out plastic drawers, tool holders, and revolving bins segregate upwards of 350 different repair parts-from electric motors to tiny washers -yet hold them within quick reach.

A 10-Year Job. Hughes spent 10 years and some half a million dollars developing Space Station. It was designed for the kind of day-to-day bench versatility required of Hughes's own missile-component and electronic production. More than a thousand of the benches -some specialized for complex electronic assembly, some for mechanics, some for routine maintenance-are currently in use at Hughes' far-flung plants.
Says Harold W. Emmons, of Hughes's Ground System Group, Fullerton, Calif., which is marketing Space Station:
"We designed the workbenches strictly for our own needs. But so many other industries


Power arm mounted an a dolly canveyor lets you angle and posilion work for convenience. You cover track with a formica lop when not in use. "Swiss deese" fixture that holds circul board here costs about \(\$ 19\).


This is the basic bench, costing about \(\$ 100\)..
wanted them that we decided to make them available-to individuals, as well as to industry."

Fitted with every available rack, bin, accessory, and add-on, a Space Station carries a \(\$ 350-\$ 400\) price tag. It's doubtful, however, that any home craftsman would need every accessory. Actually, \(\$ 100\) buys you the basic bench shown above (fitted with a \(4 \times 5-\mathrm{ft}\). formica top, three \(22 \times 7 \times 5-i n\). slide-out plastic
drawers, built-in waste container, tool and accessory holder, and a two drawer-and-locker storage section). Once you've set up the basic unit-which comes ready to bolt-assemble-you can add accessories as you need them.

Rundown on Add-On's. Bench lights (a \(5-\mathrm{ft}\). fluorescent fixture with two tubes) bolt on and cost \(\$ 32\). You can add an ash tray and coffee-cup holder for just 90¢. For electronics, you'd want a revolving small-parts holder (swivelmounted metal frame with space for 40 clip-on plastic cups, 20 on each side of the revolving benchtop unit). The swivel frame runs \(\$ 5\); plastic cups cost 25 or 50 ¢ each, depending on whether they're 4 or 8 in . wide. Invest another \(8 \$\)-for a divider to separate each cup into two parts-and you can double their utility, Special cup-fitting name clips (on which you can write a part's name or number) cost just 8¢ each.
"Everything on this bench," said one Hughes shopman, "has its special place. And everything fits -clips-on, bolts-on, or slips-in. Together, they make super-bench about the most versatile work station ever."

Take "Power Arm," one of the optional fixtures. Substituting for the usual bench vise, it resembles the pan-head atop your camera tripod. "Power-arm swivels and turns whatever you're working on.

Fix an electronic chassis to power arm's "Swiss cheese" jig clamp, and you can tilt and turn it in any direction, through a full circle ( \(360^{\circ}\) ) horizontally, or \(180^{\circ}\) vertically. The smallest of the four available power arms can hold and swivel projects weighing up to 15 lbs . and is priced at \(\$ 9.50\). The strongest can swing 70 lbs . and costs \(\$ 30\).

For the experimenter or modelmaker who wants to sit down, there are four special bench chairs, 21-27 in. high. There's also a unique four-wheel "dolly" (\$9.90)-a kind of in-thebench conveyor (upper photo).
Hughes engineers call the Space Station "a new tool." Home craftsmen who've bought the basic unit and are building toward a shopman's dream call it an out-of-this-world workbench. And that description should do until something better comes along, which is improbable.


\title{
Centralized Home Intercom
}

\section*{Single amplifier permits all-master system}

\author{
By W. F. GEPHART
}

THE requirements for home intercoms are somewhat different than those designed for businesses. If you have ever thought of installing an intercom system in your own home, you should have considered the following points.
1. The majority of the stations should be masters. Due to movement in the house, calls may have to be originated from any station.
2. It should be instant-operating. Due to limited usage, it should require no warmup time, so it can normally be turned off, minimizing operating and maintenance costs.
3. Called stations should be able to talk without using a switch. Since householders don't sit at desks, they should be able to answer without going to the unit and operating a switch.
4. Individual stations should not require ac power. This gives greater station location flexibility and simplifies wiring.
5. Cost should be reasonable. Home needs should not require excessive expense.
6. System should be ac powered. This reduces operating costs and avoids having to remember battery replacement.
The unit described in this article meets all of the above requirements, and was designed specifically for home use. Since it is a "single channel" system, it is not entirely adaptable for businesses, and can handle only one call at a time. This unit has four masters and one substation, but the basic plan can handle anywhere from two to 23 stations in any combination of masters and substations.

The total cost of the unit shown, using surplus relays, was about \(\$ 80\). To duplicate it as nearly as possible in commercial units would run from \(\$ 125\) up, depending on the manufacturer and features desired. The savings in the centralized system can be realized in the cost of the amplifier and power supply parts-about \(\$ 40\). If a separate amplifier were provided for each master station, (which would eliminate the need for relay switching), each master station would cost about \(\$ 50\).

The centrally-located amplifier power sup-


Since stations do not require ac power, they can be mounted almost anywhere. This one was mounted above the phone.
ply control unit (Fig. 1B) can be placed in an attic, basement, or closet. The location should be selected for minimum length cable runs to each master station. The amplifier is turned off and on, and switched to various stations by relays, which are controlled at the master stations.

Operation. Since the system can be adapted to accommodate a number of stations, let's review the operation and switching system by referring to the schematic, Fig. 2. Notice that the power transformer (T1) primary is connected to the ac line at all times, so that positive de voltage ( 24 volts) is connected to pin 8 of Ryl and pin 6 of Ry2 thru Ry6 at all times.

Now, assume that station 1 wants to call station 3. First, the amplifier is turned on by closing S 2 on station 1 . Cable lead 3 is ground (or minus 24 volts), and closing S2 grounds the arm of S3. Since we have set this to station 3, cable lead 8, which goes to pin 5 of Ry4, is grounded, and Ry4 closes. Positive voltage, on contact 1 of the relay, goes through contact 2 and R2, applying voltage to the amplifier.

One side of the speaker in station 1 (LS1) is grounded to cable lead 3 , and the other side has two paths. One goes through cable lead 1 to contact 7 of Ry2, but since this relay is open, this path is useless. The other path goes through the lower half of S2 to cable lead 6, and to contacts 8,13 and 4 of Ry2.

Since Ry2 is open, the path continues through contact 14 to contacts 2 and 4 of Ry1, and then to the output transformer, so station 1 is on LISTEN.
Now let's see how the sound gets from station 3 to station 1. The station 3 speaker (LS3) has one side grounded, and two paths for the other side. One path goes to S 8 , which is open, and the other goes to cable lead 1 at station 3, and then to contact 7 of Ry4, which is now closed. This connects to contacts 8,13 and 4 . Contact 8 goes back through the cable to \(\mathrm{S}_{1} 8\), which is open. Contact 13 is floating, since the relay is closed, but contact 4 connects with contact 3 which goes to contacts 7 and 5 on Ry1, and from there to the amplifier input transformer. Therefore, any sound in the room where station 3 is located will get to the amplifier input through this path, and from the amplifier output to the speaker at station 1 as outlined above.

For station 1 to talk to station 3, the PRESS TO TALK switch (S1) is pressed. This places ground on pin 1 of Ry1, closing it, which reverses the speaker connections to the amplifier, so LS1 is then connected to the input, and LS3 to the output. Releasing the switch opens Ryl, restoring the original condition, so station 1 can listen. No switch manipulation is required at the called station, so the person being called does not have to be near the station. The system is sensitive enough that a normal speaking voice can be picked up anywhere in the average room.
A Pilot Light Circuit, consisting of R1, L2 and C3, is included, although it is not vital. It helps prevent leaving a station on inadvertently, which would immobilize the system for others. Since pilot light current flows in the cable with voice circuits, well-filtered dc must be used, and a separate filter system (L2 and C3) is used to avoid exceeding the current capacity of the main choke (L1). The pilot light in the master station making the call goes on when one side is grounded by closing the ON-OFF switch (S2, S5, S8, etc.).
Substations, such as station 5, work on a simpler procedure. Setting the selector switch (S3, S6, S9, etc.) closes Ry6 when set on station 5 and master is turned on. The upper contacts of this relay supply amplifier voltage, and the lower contacts connect the substation speaker (LS5) directly to contact 7 of Ry1, and from there to the input or output of the amplifier, depending on the position of Ry1.

Stations within the house should usually be master stations, and those at outside doors should always be substations. In some cases, it may be desirable to put substations in nurseries or children's rooms, so that calls cannot be initiated or adult conversations in other rooms overheard.

Privacy Switches. Station 4 includes a PRIVACY switch (S13). Normally, as soon

(A) Top view of surplus power transformer and plug in capacitors. Note the shield between the power supply and the amplifier and relays. (B) Bottom view showing shielding between power supply and amplifier and relays.
as you turn the unit on, you are in LISTEN condition to the station selected. To permit privacy in bedrooms, this switch (in the position shown) cuts the speaker in the station out of the circuit, and connects a buzzer ( Z ) into the circuit. One side of the buzzer is connected to the positive pilot light voltage through the top contacts of S13, and the other side is connected to one side of the coil of Ry5 through cable lead 4.
When this station is called, the Ry5 closes by having one side of its coil grounded. This ground also appears on one side of the buzzer, and it goes on. When the person in the room wants to answer, he throws S13 to the other position, which stops the buzzer and connects the speaker in the circuit. Operation is then normal. Upon completion of the conversation, S13 can be returned to the position shown, putting the buzzer back in the circuit for a future call, and cutting the speaker out.

The output transistor (Q4) will draw a high current without a speaker across the output transformer. If a PRIVACY switch is to be used often, or included in many units, it might be well to connect a load resistor (R18) as shown by dotted lines, to reduce this current.

With this understanding of the system, it can be seen that one multi-contact relay (Ry2 through Ry5) and one 10 -contact terminal board (TB1 through TB4) are required for each master station, and one DPST relay (Ry6) and one 2 -contact terminal board (TB5) are required for each substation. The limit of 23 stations is imposed by the maximum size selector switch (S3, S6, etc.) available.

DC Relays should be utilized, since ac actuating voltage in the cable would create excessive hum. Low power relays should be used to minimize the energizing current required, and should be sealed, since attics and basements are usually dusty. If sealed relays are not used, they should be placed under the chassis or homemade dust covers should be
made for them.
The master station relays must have two A contacts (single pole, normally open), and one C contact (single pole, double throw). The substation relay must have two A contacts, and the talk relay must have two C contacts.

The relays used in the unit shown are surplus \(24-28\)-volt dc relays, with a 300 -ohm coil, and draw about 80 ma . The master relays have three A and one B (single pole, normally closed) contacts, but one A and the B contact were wired together to make a C contact. The contact numbers are shown solely for explanatory purposes. Since this coil voltage is an aircraft standard, many suitable relays are available on the surplus market.

Installation Suggestions. No specific dimensions or layouts are shown, since the exact extent of the unit will depend on the number of stations to be used. Provide adequate ventilation for the power transformer (T1) and rectifier (SR1), since they have voltage on them at all times. When the system is on standby (all masters OFF), it draws about 6 watts.

Use two fuses in the power supply. One (F1) is for the ac line and will blow if the transformer or rectifier shorts out; and the other (F2) protects the transformer and rectifier if a capacitor or other component shorts out.
Place the amplifier section away from the power supply to minimize hum induction. Keep the AF transformers well apart, and mounted at right angles to each other, to minimize AF feedback. Mount the power transistor (Q4) on a heat sink made of a \(3 \times 4\)-in. piece of aluminum, insulated from the chassis.
The exact size of capacitor C 7 will depend on the length and routing of the cables, as to hum pick-up. In the unit shown, the value of C7 is 10 mfd , which greatly reduces hum pick-up from the line yet doesn't seem to affect appreciably gain or tone.



Three adjustments are'required when the unit is wired. After the amplifier is wired and checked, connect speakers to the input and output, and insert a milliammeter in the power lead (going to R2). Place the speakers in separate rooms so there can be no acoustic feedback between them. Connect one relay coil to the power supply so it will draw current, and connect the amplifier power lead. Adjust R15 so the amplifier draws about 170 ma, being sure that you are not also measuring the relay coil current. This will give an output of better than 1 watt, and will mean that about 250 ma flow through choke LI on LISTEN and about 330 ma on TALK. The latter is in excess of the choke rating, but will not hurt for short periods.
A second adjustment is the pilot light supply resistor R1. Set the tap on R1 at full resistance; and, with the set-up outlined above, connect a \#48 pilot light between the R1 tap and ground. Using a high resistance voltmeter, adjust this tap until there is about 1.8 volts across the pilot light. This lower-thanrated value is suggested to minimize burnouts due to the surge when the unit is turned on.

The last adjustment is the volume control R9. With the connections outlined above, gradually turn R9 so the arm approaches the Q2 collector lead. If the speakers are properly separated, you should be able to turn it all the way up without getting a feedback howl. If you can't, there is feedback within the amplifier. To correct this, first try increasing the size of R7, then try additional shielding. If the howl persists, and wiring is correct, the feedback is probably due to parts placement.

Later, when the unit is placed at its centralized location and all cables are connected, R9 can be adjusted for desired volume.

Stations can either be built into small radio cabinets available from suppliers or, homemade cabinets can be used. Since ac power is not required at the stations, they may be either wall-mounted, or placed on tables, whichever is more convenient.

Since only low voltage is carried in the cables, regular multiple-conductor intercom cable can be used, such as Belden 8443 through 8449, 8456, and 8457. This is available in 3 through 10 -conductor, and in 12 -conductor.

For master stations without the PRIVACY switch, you will need cable with 5 conductors plus 1 for each station to be called. The PRIVACY switch requires one more conductor, and all substations require 2 -conductor cables.

Shielding is not required unless it is expected that you will have runs in excess of 75 ft . between a station and the control unit. In such cases, it might be necessary to have conductors 1 and 6 shielded.

\section*{Puzzled By Cryptic Citizens Band Messages? Here's what they mean}


F YOU happen to eavesdrop on a citizens band radio some evening, you might hear cryptic messages that sound something like this:
"Advise 10-20."
"Cicero near Cermak."
"10-15 Raid at Polly's."
"10-4."
"10-16 three bombs."
"10-19 stake out, 10-12 heat's on."
"10-4."
What you're hearing isn't really a dramatic police episode, nor is it the audio portion of an old TV show. Deciphered by Jack Catterall, technical services manager for Raytheon Co.'s Distributor Products Division, the conversation reported above is translated as:
"Where are you now?"
"I'm on Cicero Avenue near Cermak."
"Will you please pick up a can of Raid at Polly's store?"
"OK."
"I went to the store as you requested and picked up three insecticide bombs."
"Hurry home, we're having a steak cookout. The guests are here and the fire is started."
"OK."
Businessmen, taxi drivers, wives with grocery lists, and people with car pool problems all seem to be talking like policemen, Catterall observes. With almost a half million citizens band users throughout the nation,
many have adopted the police radiotelephone abbreviations to shorten their conversations.

The "hamsters," as citizens band operators sometimes call themselves, have generally agreed on the following more commonly used signals.

10-1 Reception poor; can't understand you (pronounced ten one)
10-2 Reception good
10-3 Affirmative, will do
10-4 OK or yes
10-5 Need your assistance to relay a message, or I am relaying a message
10-6 Busy, can't talk now
10-7 Going off the air
10-8 Coming on the air, station is manned
10-9 Repeal your last message
10-10 Finished transmitting
10-12 Officials or visitors are present
10-13 Give me road and weather information
10-15 Make a pick up of . . . . . . . at. . . . . . . .
10-16 I have picked up. . . . . . . . . . . . . . . . . . . .
10-18 Do you have a message for me
10-19 Return to station
10-20 Position report
10-21 Call me by telephone
10-23 Arrived at scene
10-24 Finished with last assignment
10-33 I have an emergency message
10-37 What is your call sign and name
10-70 Fire


Electronic Piano

Steel reeds and transistors replace strings. Piano never needs funing

\author{
By BILL McHUGH
}

SIT down at the keyboard, play a few chords and you are pleasantly surprised. Usually a small piano implies a sacrifice in tone quality, but this one sounds very close to what you hear from a good spinet.

Let's try the action. It's not an expensive

FIG. 1: This is the portable model Wurlitzer electronic piano. Amplifier and speakers are built-in. Foot pedal controls the sustain while keyboard knobs control volume and vibrato rheostats. Heart of electronic piano (left) is Swedish steel Sandvik reed . . . this one for a middle tone is about \(21 / 2\) inches long. It bolts to the reed bar, hole at right for that purpose. Tip weight is ground or filed in reed pitch adjustment at factory.
piano, so we can hardly hope for concert hall touch-but we're amazed! This piano is agile! Your fingers fly over keys that feel even and nimble. It certainly is not a sluggish keyboard.

Opening the top lid (Fig. 3) we find something unlike anything we've ever seen in a piano. Maybe this is the "piano of the future." It is one of the few breakthroughs in piano design in a long time.
The piano has no strings! Sound comes from steel reeds and they never need tuning.
So what? Well, ask any concert pianist, or recording artist, and he'll tell you that when you want to play fine music, you have to tune a grand piano before every performance. Traditional pianos have one or more metal strings for every note. The strings are arranged like a harp, on a heavy massive iron casting with a tension that can run into tons of pull. Tune the piano, and it is only a matter of time until the tension on the strings, plus changes in temperature, pressure and humidity cause it to slip out of tune.

If you live where the temperature is even year around, tuning every 6 months may be enough. But a piano on the stage of a night club, a theatre, a music school, in the tropics, the arctic ... any place where the instrument gets lots of use, is an engineering problem now solved by the new Wurlitzer reed principle.

A fringe benefit of interest to any entertainer is a spectacular reduction in weight. The average small home-size piano weighs 400 to 600 pounds. Only experienced movers can lug such a weight from place to place. The new electronic piano is not exactly a lightweight at 80 pounds, but a man and a boy can put it in a station wagon and move it. There is nothing fragile about the portable model . . . it is a tough piece of machinery,
we saw proof of fact that it can take a lot of moving.
The real news is for parents, landlords, and neighbors. Since the piano is electronic, and its sound emits from a loudspeaker, all you have to do for quiet operation is plug in the earphone jack. Then junior can practice all night if he wants, while the rest of the world sleeps. Probably every composer, musician, and pianist has tried one time or another to muffle, baffle, soft pedal, or otherwise kill the sound of a practice piano. But nothing seems to work, because if you dampen the strings of the conventional piano, you also change the response (bounce-back) of the hammers and the keyboard feel can be so different that practice is a waste of time.

Another factor in practice is a psychological one. What music student likes to broadcast practice boners to the whole neighborhood? The ribbing that every young pianist takes from family and friends is enough to cause many potentially fine musicians to stop taking lessons and start watching TV as a life-long hobby. To develop skills as a pianist takes hundreds of hours of concentrated study and practice. The electronic circuits and earphone attachments now make this possible in crowded apartments, in college practice rooms, and in the ordinary home. Professional musicians report that they can rehearse new numbers anywhere-in hotels, and even on stage with curtain up. Flip the switch and the sound is completely private.
The heart of the new invention is a Sandvik Swedish steel reed (Fig. 1). When the pianist strikes the key, the felt hammer hits the reed causing it to vibrate as in Fig. 4. The touch closely resembles that of a conventional grand piano because the "action", (hammer mechanism) is mechanically and functionally similar.

The reed vibrates at a pre-set pitch. One reed can produce only one pitch, for example middle C is a standard 261.626 cycles per second. The tip of the reed is weighted with

FIG. 4: Photo shot af \(1 / 10\) th second shows the are of the hommer striking steel reed and bouncing away. Engineers used high speed cameras to perfect this new piano action which duplicates grand piano response.


FIG. 3: Looking inside top of electronic piono you can see how the damper lever (lifted away) controls sound. Like a standard piano, os long as you press key, damper remains up. When key is released folt damper drops down to stop vibration of reed below.


a lead mass. By filing or grinding away tiny amounts of this weight, factory technicians working with precise frequency measuring equipment establish the pitch. Once set, it stays right on the note. Should the reed ever break, a rare happening, you will be able to buy a replacement for less than 50 cents.

Electronic Function. All the reeds, one for each key of the piano, are bolted securely at one end to the cast aluminum reed bar


FIG. 5: Console hame style electronic piano costs less than \(\$ 500\), yet has complete 64 -note standard keyboard and pedals. At keyboard side are volume and vibrato contral knobs. Electronic amplifier (insel) operates on 9 transistors, delivers over 10 watts audio.
(Fig. 3). When they are at rest, the reeds are centered slightly below the slotted cavities of the pickup plate. This pickup plate is charged at a plus 270 volts dc while the reeds are at zero or at ground voltage.

The piano in effect is a big capacitor. It is similar to the variable capacitors (condensers) used to tune a radio. When the piano is not playing, the reeds are in a neutral position and capacity is very low. The hammer strikes a reed and as it starts to vibrate, the tip swings upward. Capacity increases until the reed travels through the slot and slightly beyond. At that point the capacity starts to decrease until the reed reaches the end of its upward swing. Now as it starts to travel downward back through the pickup plate capacity again increases. This action repeats itself for every cycle . . . from 50 to


FIG. 6: Eighty-pound portable piano (left)" can be used outdoors, on boats, in army camps without ac power. Entertainer Marian McPartland (above) uses Wurlitzer electronic transistor piano at Savoy Hilton, New York. Baftery power pack will be available in early 1963.


FIG. 7: Elecironic piano installation at Ball State Teachers College, Muncie, Indiana, equals 13 separate practice rooms. Students hear private com-

2093 times per second depending on which note of the piano you are playing.
The varying voltage feeds through a load resistor, is then amplified through a transistor amplifier (a less expensive tube amplifier is also available) and fed to the loudspeaker. Pianos are equipped with the standard sustain pedals, and volume controls. In the portable model, the volume control is on the keyboard; in the home model, a pedal controls volume. But there is also a second rheostat control which controls the vibrato section of the amplifier. By adjusting this


FIG. 8: Electronic piano design (right) shows reduction in weight and cost. Wood framing which supporis heavy cast iron plate and soundboard of con-

ments and only their own piano on phones. Instructor can demonstrate on main unit, connecting individually to any student, or to entire class by means of control.
control, you can obtain effects from Hawaiian guitar to vibraphone.

The amplifier puts out enough sock to fill a small auditorium. Wide open, the electronic piano will deliver considerably more sound volume than a standard spinet. External speaker jacks, and a jack for input permit a wide variety of electronic hookups. For example, a musician can rig his electronic piano so pre-recorded music plays through the piano speaker system along with what he plays. A musician could easily play duets with himself!

ventional piano (leff) is eliminated. New piano is 1/6th the weight. Electronic amplifier delivers more sound than standard piano, produce special effects.

\title{
College Radio Stations
}

Over 250 of these stations broadcast unlicensed in the AM band

\author{
By DON A. TORGERSEN
}


WPGU at the University of Illinois dedicates its broadcasting to the "best in music, news, and sports."

ALTHOUGH seldom publicized as a broadcasting medium, the college radio station has become an important function in more than 250 college and university communities. These stations not only provide a reliable source of news and entertainment to the community, but also supply the broadcasting industry with a number of highly trained personnel, most of whom are acquiring degrees in radio and television, journalism, advertising, and engineering.

College radio stations broadcast on the AM band, and can usually be heard on any AM radio in the vicinity-even car radios and portables. By means of a special engineering principle called "carrier current," the college station is able to deliver a powerful, high quality signal to the community without being heard much beyond the boundaries of the campus itself.

Carrier current is a technique whereby transmitters, instead of being coupled to antennas, are coupled directly to the power lines of dormitories and resident halls. This same engineering technique completely solves the noisy reception problems which reduce the listenability of other stations in many of the new, steel-and-concrete, fluorescentlighted dormitories now being constructed. Very often, the college station may supply the only strong signal going into these build-

(A) Usually, an engineer and an annauncer wark as a team to produce a shaw.
ings. One student engineer described carrier current in this way: "You might say that what a person hears on his radio is "controlled interference \({ }^{2}\) in the power lines."

Unlicensed Broadcasting. What is peculiar about these stations is that they operate unlicensed. This is due to a provision in part 15 of the Rules and Regulations of the Federal Communications Commission, which states that a transmitting device may operate in the broadcast band with a signal strength of 15 microvolts per meter, at a distance of one wavelength divided by two pi (157,000 feet/frequency in kilocycles) from any radiating source. Any such transmitter may operate unlicensed so long as it does not interfere with regularly licensed stations. Citizens band communication is another type of transmission governed by this provision.

Two such stations are WPGU (University of Illinois, 610 kc , Champaign-Urbana) and WRCT (Radio Carnegie Tech, 900 kc , Pittsburgh). These stations are staffed, managed, and operated entirely by undergraduate students as an extracurricular activity independent of formal school administration. WRCT has a staff of over 125 students, while over 200 students run the affairs of WPGU

Most of the equipment has been designed and constructed by the students themselves.

(B) But some announcers do their own engineering.

By keeping abreast of the latest developments in the electronics industry, the students have been able to design high fidelity units with a frequency response higher than that allowed for other AM stations in the same

area, since the commercially licensed stations are required to suppress their high frequencies. WRCT uses seven transmitters conveniently located that broadcast flat within 2 db up to \(15,000 \mathrm{cps}\), and range in power from 10 to 75 watts output with a total output of about 150 watts.
Other facilities at WRCT include four studios, two of which are audio participation studios; remote equipment for live or recorded programs; and audio equipment to handle stereo recordings at 33 and 45 rpm , monophonic recordings and electrical transcriptions (lateral to 16 in .) at 33,45 , and 78 \(r p m\). Their tape recording equipment consists of half track at \(71 / 2\) and 15 ips , full or half track tape playback at \(71 / 2\) and 15 ips , and cartridge tape machines. To round out their studios, they employ United Press International radio news service, NBC radio network, citizens band transceivers, and beep telephones.

WIIT (Illinois Institute of Technology, 610 AM, 91.9 FM, Chicago) has experimented with dual broadcasting of AM and FM channels, and has even tried multiplex. An engineer describing the power of their two transmitters boasted, "We load 'em up with 20,000 milliwatts."
Programming at these stations often covers as much as 133 hours per week. It includes classical, popular, folk, and show music, news, press conferences, drama, and play by play broadcasts of football and basketball games.
In times of emergency, the college radio station will often serve as an auxiliary to national networks. In May of 1962, when a tornado struck Rantoul, Ill., after a severe wind and rainstorm, the news staff of WPGU sent dispatches, both taped and telephoned, for use by UPI and ABC.
Financing these stations, since they are not for profit, is not much of a problem. Some of them are supported in part by grants from the student body, and in part, since they are not classified as educational stations, by the sale of commercial time to local merchants as well as many national advertisers. WPGU, which is financially self-sufficient, solicits a certain amount of its advertising through a New York agency, and actually realizes a small profit at the end of the year. This profit is turned back into the Illini Publishing Co. for use in other campus information activities.

Training. Although these stations are not required to have licensed technicians on their staffs, WRCT has imposed its own requirements, and 12 staff members hold first class radio telephone licenses. WRCT conducts regular classes in order to prepare their technicians and announcers for FCC examinations.
At WPGU, before a prospective announcer
is even placed on probationary status, he is given an audition to see if his voice is suitable for radio work, and to make sure that he will not tense up or freeze in front of a mike. To become a staff announcer, he must pass a written test and a simulated-broadcast examination under stress. One of the favorite techniques of the practical test is to tell the announcer that something has gone wrong



The record library at WPGU contains almost 20,000 records.
with the record deck after he has introduced a record, and force him to ad lib for several minutes.

In testing engineers, it is better to face them with actual engineering predicaments. Tape decks can be bumped to the wrong speed, or transmitters in certain buildings can be mysteriously shut off. The hardest test for an engineer is known as the "flip-segue." This antic requires him to turn a record over after a number has been played, and im-


Station personnel design and maintain most of the equipment. These technicians are checking out a malfunctioning transminer with an oscilloscope.


After 19 hours of continuous daily braadeasting, a weary engineer puts the station to bed at the master control panel.
mediately play a number in the middle of the opposite side. Whereas the siandard time for this maneuver is 15 seconds, one ambitious engineer at WPGU has got it down to a split lightning four seconds.
Not all staff members are males. At least one-fourth of the staff at WPGU is composed of coeds. Besides being valuable as copywriters and production managers, several coeds have joined the engineering staff so that they can engineer the shows that their boyfriends announce.

WPGU actually owns the largest record library in the state of Illinois south of the Chicago area. There are almost 20,000 records locked up in the record library. With several bands to each record, this adds up to over 125,000 selections.

To give the station a touch of personality, famous stars such as Tennessee Ernie Ford, Pat Boone, the Four Lads, Shelley Berman, and Connie Francis send short taped spot promotions to the station. In summing things up, Pat Boone said, "This is Pat Boone. I don't know a whole lot about WPGU, but they do have good taste in music. They play my records."


\section*{\$4 Transistor Tester Uses}

\author{
By ROBERT E. KELIAND
}

THIS' neat looking transistor tester costs \(\$ 4\) or less, going by current catalog prices, and you can probably build it for half that much by using scrap parts.

The unit checks transistors either on the bench or in the circuit, and results are adequate for most service and experimental needs. The advanced electronics expert needs a complete range of tests to pin down the detailed performances of any semiconductor, and so might find this tester wanting. But it is surprising to see what can be done by using this simple tester along with manufacturer's transistor spec books.

The tester will work with any VOM or VTVM that has \(R \times 1\) and \(R \times 100\) ohmage scales. The ohmmeter provides the indicating meter, and also eliminates the need for a separate power supply for the tester.

Build the Tester in a \(51 / 4 \times 3 \times 21 / 2\)-in. gray hammertone aluminum utility box. Photos show a transistor socket mounted on the top panel for testing out-of-circuit transistors. If you want to add a power transistor socket, there is plenty of room, but you will have to rearrange the available space. The pin jacks on the end of the box are for testing
transistors in circuits, and you will need three color coded alligator clip test leads. For transistor work, the small size clips are the best.

Follow the chassis layout (Fig. 3), as you cut the holes for the sockets, switches, and jacks. Ready-painted chassis should be protected with cloth when clamped in your vise. Exact measurements are not given for the tube sockets since various brands will differ in size. Less expensive wafer sockets salvaged from old radio sets will also fit.
The chassis has two pin jacks for the prods of the ohmmeter. If your meter has banana or alligator clips as prods, substitute the proper jacks to fit. Two 5 -way binding posts would also serve this purpose.

Use \#22 solid insulated wire to hookup the connections on the chassis, and then connect the tube sockets with flexible stranded insulated wire.
How It Works. A transistor consists basically of two diodes; the collector-base diode and the emitter-base diode. By measuring the forward and back resistance of these two diodes and comparing the results you get an indication of transistor condition. Checking resistance between the emitter and the collector will indicate leakage or "break down" of the transistor base. When checking the diodes, a high ratio between the forward and back resistance will indicate a good


\section*{Your VOM}
diode. Many technicians and experimenters rely on their ohmmeter to make these measurements, but connecting the ohmmeter leads to the transistor and reversing them at least half a dozen times is time consuming and often leads to incorrect results. The simple switching circuit used in this tester makes these measurements easy.

Using the Tester. Zero adjust your ohmmeter on the \(\mathrm{R} \times 100\) scale and plug the prods in the tester. Polarity of the prods is not important since the DPDT slide switch reverses meter polarity. Now you can set the rotary

\footnotetext{
No. or Amt. Req.
R1
S1
S2

Size and Description
\(1000 \mathrm{ohm} 1 / 2\) watt carbon resistor ( \(\# 1 \mathrm{MMO00}\) ) *
DPDT slide switch (\#368148)
DP 3 Pos. non-shorting rotary switch (\#358235, knob supplied)
insulated tip jacks ( \(\mathbf{\# 4 1 H 1 1 5 \text { ) } ) ~}\)
allipator clips (\#45H171)
tip glugs (\#41H200)
transistor socket, 3 pin (\#40H294)
8 pin octal tube socket, retainer ring mount (\#40H058)
9 pin miniature tube socket (\#22H594)
7 pin miniature lube socket ( \(\# 22 \mathrm{H} 567\) )
chassis, aluminum minibox \(51 / 4 \times 3 \times 21 / \mathrm{s}^{\prime \prime}\) gray hammertone finish (\#80P348)
Misc. \#22 solid Insulated hookup wire. Stranded insulated wire. Screws, nuts, solder
* All numbers from Allied Radic, 1963 Cat. 220. Address 100 N .
}

MATERIALS LIST-TRANSISTOR TESTER Western Are., Chicago 80, 111.

Fig. I-1 A: 5 \& \(M\) consultant Mort Friedman (far left) checks tester plugged into inexpensive Monarch VOM. Manufacturers fransistor manual provides reference. Transistors can be inspected in seconds and graded for relative performance. Use short probe leads (left) with miniature alligator clips for checking transistors in wired circuit. This setup has been used for production inspection and proves fast and practical. An otherwise time-consuming test is accomplished without using expensive laboratory gear. Delicate low power transistors are protected from burnout by IK resistor in tester.


Fig. 2: Tube filament checking sockets are optional. Wire your chassis connections with solid hookup wire, and use flexible wire for the tube sockel connections.



EMITTER.COLLECTOR LEAKAGE*
\begin{tabular}{lcr} 
Transistor & Meter Scale & Minimum Readings \\
RF-IF-Conv. & \(R \times 100\) & 6000 Ohms \\
Low Power Audio & \(R \times 100\) & 1500 Ohms \\
High Power & \(R \times 1\) & 1050 Ohms \\
Transistors Removed from Circuit.Tested Room Temp. \\
NOTE: Readings Are 1000 Ohms Higher than Actual \\
\multicolumn{2}{l}{ Transistor Resistance Because of R1 } \\
* Cut out and cement to meter case. \\
(Courtesy of Delco, Div. G. M.)
\end{tabular}


Fig. 6: Tube checking circuits on side of box are handy exira feafure for radio and TV servicemen working on sets in homes. Binding posts for other kinds of tests can be added to this handsome case.
switch to position CB (Collector Base) and insert a transistor in the socket. Your ohmmeter should indicate either a very high resistance between 200 K and 1 megohm or a very low resistance, 1500 ohms or less. All readings are 1,000 ohms higher than the actual transistor resistance because of current limiting resistor R1. Changing the polarity with switch S1 should immediately give you a different resistance, lower or higher. A high ratio in the two readings indicates a good collector diode.

The second position of the rotary switch EB (Emitter Base) measures resistance of the emitter to base diode. The pair of readings should be similar to the collector base diode.
Position EC of the rotary switch tests the emitter-collector leakage. Readings lower than those indicated in Table A indicate breakdown or shorting of the base. This seldom happens with low power transistors running on normal voltages. Changing the polarity reverse switch should give you a different reading, but both readings should be higher than those listed. For permanent reference, cut out Table A and cement it to the underside of the Tester Case for quick reference.
Both PNP and NPN transistors are tested in the same way. In the circuit testing will produce different sets of readings on the meter, but your low resistance readings should be about the same or slightly lower. High end readings will decrease to 2 K to 100 K depending on the shunt resistance present in the circuit being tested. A ratio of 5 to 1 indicates a good transistor. For example, a reading of 1200 and 2000 ohms is actually a 5 to 1 ratio, because you must subtract the 1,000 ohm value of R1 from each. If a transistor shows bad in the circuit, remove and confirm your test out of the circuit. The leakage test cannot be taken with the transistor in circuit.

A Caution. Some ohmmeters can deliver enough current to ruin transistors, and for this reason R1 is included in the circuit as a current limiting device. Except for power transistors on which you can use any ohmmeter scale, always use the R \(\times 100\) meter scale. High impedance ohmmeters are best suited as the current supply is generally much lower, and the accuracy of the meter itself is better. Resistor R1 also limits current when testing low-volt tube filaments. This test is simple continuity, and a reading indicates a good filament. Check a tube manual for proper filament connections.

\title{
Read AC Current with Your Voltmeter
}


Author Lucas demonstrates how "Mini-Amp" and sensitive VTVM can be used to observe small changes in power consumed by radio. Unsteady reading indicates defective parts.

\section*{Pickup coil converts VOM to AC current reading instrument}

\author{
By ALFRED R. LUCAS
}
amps ac. The voltage induced in the transformer winding is proportional to the current, so you simply connect the transformer to your ac voltmeter, and read on a calibrated scale (Fig. 2). A more sensitive ac current meter can be built (Fig. 1) for less than \(\$ 5.00\). Calibrated properly, it will perform as well as instruments costing \(\$ 100\) or more. Depending on the quality of your VOM, sensitivity can extend down as far as the microamp range and up to heavy appliance currents as high as 25 amperes and more.

Altering the Transformer is your first step. No specific transformer is

AN OLD transformer that may be kicking around your scrap box is all you need to read ac amperage. The ordinary VOM (volt-ohmmeter) or VTVM (vacuum tube voltmeter) usually has a dozen or so scales ranging in ohms, volts, and dc amps, but it won't read ac current! This is a measurement most meters can't handle, and yet it is very important in many radio or appliance service jobs and on the electronic design bench.

The "Mini-Amp" pickup coil, made of a transformer (Fig. 8) is similar in principle to the clamp-on ammeters commonly used by electricians. The measuring head couples to the line by induction, so you can read the ac amperage consumed by a motor or appliance without having to cut into the power wire! Any ordinary ammeter has to be wired right into the circuit in series with the appliance every time you want to take a reading.
There are two ways to build the probe head. The split core magnet can be used directly to read large currents from 1 to 25
listed since you can use any audio output transformer that has E-type core construction similar to the one shown in Fig. 8. Such transformers are common in radios and amplifiers. Dismantle by bending back the transformer cover tabs as in Fig. 8. Next remove the two retainers with long nose pliers. Remove the coil and place it over one of the side legs of the transformer core (Fig. 8).

Replace the frame by bending one of the mounting tabs straight and pushing it over the core and through the transformer coil. Finally, remove the primary leads of the transformer (usually heavier solid wires). The transformer modification is now complete.

If you are building the simplified model (Fig. 2) solder two test cord leads to the secondary windings and solder the plugs, PLI and PL2, to the other ends. This finishes the construction of version one.
The more sensitive version of the pickup coil uses the same transformer and a printed circuit amplifier. Mount the transformer so


S\&M consultant, Erving Edell checked out this method of reading power consumed in home circuits. It was easy to trace circuits, in any part of the building. The VOM is far more sensitive than the usual electrician's instrument and even a 25 watt test lamp added to an existing amperage on the dial was clearly seen on the meter's calibrated scale.
that the core piece fits snugly against the side of the case. If necessary shim the fit with thin strips of wood. Mount all other parts (Fig. 9) except the amplifier chassis. Wire in the wall receptacle, splitting the two-conductor line core, and running only one of the wires through the gap in the transformer core. Then wire the circuitboard amplifier according to Fig. 3.

Insulate circuit board with electrical tape and wire it into the circuit under the switch as in Fig. 9. Complete construction by using the grounded side of R3 as a common terminal.

Calibration. Before using either unit, a conversion table or tape-on scale must be made for the VOM or VTVM. There are two ways to make this calibration. Several known currents must be sent through Mini-Amp
and the output voltages recorded. These currents can be obtained by placing known resistors in series with the line. Knowing the line voltage, the current is given by Ohm's Law as the voltage divided by the resistance. In using this method be sure to use a resistor with a high power rating. If you have a variable transformer, the entire process can be done with one resistor. Simply change the voltage by step-wise amounts and calculate the current at each point. Different size light bulbs can also be used with slightly less accuracy. The current through them is found by dividing their power rating by the line voltage. Current ratings appear in catalogs available from the lamp manufacturers.


This method of calibrating ammeters should be used only if you have no power resistor and variable transformer. Lamp watlages in various combinations will give you an accurate enough reading to plot a scale. Accuracy will be within 5 percent, provided that you keep your incoming line voltage steady.



The completed pickup fits in the palm of the hand. To read amperes, you pass the conducting wire through the open side of the transformer. Top left is transformer (common in radios) before alteration.

Calibrate the high scale first. Put the selector switch in the " HI " position and set the VTVM or VOM to the lowest ac voltage range. Send increasing known currents through Mini-Amp and record the position on the voltmeter scale for each one. If a higher current scale is desired, turn the VTVM or VOM to the next higher ac voltage range and calibrate it in a similar manner.
To calibrate the low range, select a value


Inside view shows Mini-Amp chassis. Device to be tested plugs directly into receptacle on top. Power line (arrow) feeds through opening in iransformer. Transformer secondary winding output is amplified and feeds to test leads. R3 is common terminal.
\begin{tabular}{|c|c|}
\hline & MATERIALS LIST-MINI.AMP \\
\hline Amt. Req. & \begin{tabular}{l}
Size and Description \\
Simplified madel for higher currents
\end{tabular} \\
\hline 1 & modified audio output transformer of your choice (see text) \\
\hline 1 or 2 & \begin{tabular}{l}
plug(s) to fit valtmeter \\
Amplifier model for any current rance
\end{tabular} \\
\hline 1 & 5 mfd. 15 volt miniature capacitor, Cornell Dubilier 405 (Allied \#18L159) C2 \\
\hline 1 & 9 volt battery (Burgess 2 U 6 or equiv.) \\
\hline 1 & 5 mfd .6 volt miniature capatitor, Mallory TT6X5 (Allied \#18L769) C1 \\
\hline 1 & \(680 \mathrm{~K} \mathrm{1/2} \mathrm{watt} \mathrm{resistor}\) \\
\hline 1 &  \\
\hline 1 & \begin{tabular}{l}
10 K carbon potentiometer linear taper, IRC \\
(Allied \#30M306)
\end{tabular} \\
\hline 1 & 4 pole, 3 position, non-shorting rotary switch, Mallory 3243J (Allied \#34B357) \\
\hline 1 & CK722 transistor miniter \\
\hline 1 & aluminum case, Bud Minibox CU-3003A (Allied \#80P363) \\
\hline 1 & modified audio output transformer of your thoite (see text) \\
\hline 1 & battery connector. Cinch.Jones Type 50 (Allied \#54J037) \\
\hline 1 or 2 & plug (s) to fit voltmeter \\
\hline 1 & wall power receptacle (baseboard mounting type) \\
\hline
\end{tabular}
of full scale current from 50 milliamps to 10 amps. With the VTVM or VOM set on the lowest scale, Mini-Amp in the "LO" position, and the selected current flowing through Mini-Amp, adjust the calibration control until the voltmeter reads full scale. Mark this setting of the calibration control with a piece of tape. Calibrate the remainder of the scale in exactly the same manner as the high scale.

The simplified Mini-Amp is also calibrated in the same manner as the high scale of version one, only in this case one lead of the load must be placed in the opening of the core, and the core piece placed over it to close the gap. A more permanent arrangement can be made if an extension cord is split, and one of the wires is run through the core with the core piece fastened permanently in place. Then the device to be tested can be simply plugged into the extension cord. You can calibrate as many different scales as you need by simply employing a different setting of the calibration control for each one.

Suction Fastener for Soldering Pencil

- A rubber suction cup attached to your soldering pencil's handle by means of a cable clamp comes in mighty handy at times. For example the pencil can be suction-fastened to any smooth tool or toolbox or other object for difficult jobs requiring more than two hands. Or it could be fastened to the side of a chassis when standing idle while building or servicing.-John A. Comstock.

\title{
Maybe you've monitored five continents, logged 100 countries, verified stations on the other side of the world, but what about our own United States?
}

\author{
By C. M. STANBURY II
}

ONE of the best things about DXing America is that you can start right in, using any ordinary AM radio you may have around the house. At night, find a place where you will disturb other members of the household the least, plug in, and get set to listen.
Tune away from local stations, push the volume up, and look for a weak signal: you will soon have your first "logging." With just a simple receiver, especially after midnight, you will be able to \(\log 50-k w\) clear channel stations (see White's Radro Log, page 159) up to 1000 miles away. The better your receiver, of course, the more you will hear.
One improvement you should make, if you can, is the addition of an outdoor antenna, as long and as high as possible. Most receivers are provided with means for attaching such an addition: if yours is not, simply connect the antenna to the terminal of the built-in loop with a \(.05-\mathrm{mfd}\). capacitor. If the terminal is difficult to locate, any competent repairman can help you. Make sure the bare antenna wire is not grounded against a metal window frame or tree limbs.
If you live in an apartment and cannot erect an outdoor antenna, the copper pipes of a heating system make an excellent substitute. Even a piece of copper screening in a window helps.
When and What. At sunset, and again around sunrise, numerous daytime stations can be heard as they sign off and on again. This type of listening is not easy, as two or three stations are often heard simultaneously, but careful monitoring can produce a bagful of calls logged. It just takes practice.
During the evening, distant U.S. reception is usually limited to clear channel broadcasters and a few regional outlets. (A regional station is one that operates with 1 or 5 kw at night.) The clear channel powerhouses are excellent targets for the beginner, as almost all verify, and they are good sources of news.
From midnight until 5 a.m., DX is possible on almost any channel, even the "graveyard" spots-1230, 1240, 1340, 1400, 1450, and 1490 kc -where a number of low-powered stations transmit. DX will not be possible, of course, on frequencies where local and semi-local stations operate all night. In recent years allnight stations have become the broadcast band DXer's primary problem; coast-to-coast
reception is still possible, however, and includes daytime stations that are permitted to test during the night.

Targets. Broadcast band DXers have many different goals. Some try to verify all 50 states (or often just the 48, due to the great distances involved in shooting for Alaska and Hawaii); Eastern listeners wanting to log the Pacific coast, by the way, should start with KFI, Los Angeles, on 640 kc .

Other DXers are more interested in logging and obtaining QSL's from \(500-1000\)-, or 1500 watt stations-and on up the ladder. Maybe you'll want to try for at least one station on each frequency.

Another interesting target is on-the-spot news coverage. This includes such things as state primaries of national interest, like Gen. Edwin A. Walker's try for the governorship of Texas. The Dallas-Fort Worth clear channel transmitter on 820 kc (shared by WBAP and WFAA) carried a Walker speech live, then later the vote count as returns came in.
During local emergencies stations that normally sign off around midnight may operate all night; WCOV, Montgomery, Ala., on 1170 \(k c\), was widely received during the Ku Klux Klan integration riot. If the emergency is serious enough, such as flood or hurricane, even daytime stations broadcast continuously.

On the lighter side, distance listening is a boon to the sports fan. Clear channel stations often carry baseball, foutball, and basketball games of national interest.
The procedure for BCB news hunting is quite direct. Get to know what locations can be heard when, and which channels are clearest during the early morning hours. Then, when something is up, determine from White's Radio Log what stations are in the area, and look for those most likely to be heard.

QSL Hunting. While broadcast band stations do not answer reception reports quite as readily as their short wave cousins, at least \(75 \%\) do verify in one way or another.
It is important to remember that AM stations, with the exception of some clear channel broadcasters, derive no revenue from the distant listener, and therefore verify only out of courtesy. Never demand a QSL: politely request it, and be sure your report is accompanied by return postage.
Although reports are usually answered by


Dear Sirl
We thank you for your letter reporting the reception of W.I.N.D on ishactes. Such reports are very useful in checking our coverage and operating efficiency.

The program details you gave have been compared and faend to agree with our program log.

Yours vecy truly,
Hencuinivg et mori mum bignat to the nosthasest hoom in
thansmister neor Gouy, inowmen


The majority of AM broadcasters verify in one way or another, and some QSL's are very elaborate, like these maps from WNOP, 740 kc , Newport, Ky., and WFIN, 1330 kc , Findlay, Ohio. The postcard from WIND, 560 kc , Chicago, measures \(7 \times 10 \mathrm{in}\).
the chief engineer of the station, and it is a good idea to address them to him, write in plain English, so that anyone at the station can understand and answer it. Do not use QRM to indicate interference or QRN instead of static.
Describe the program heard, and try to in-
clude the names of a few advertisers and the times of their spots (impossible, of course, when a test is logged). Describe your equipment and pinpoint your location-unless you live in a large city whose location is well known. The more distant the reception, the better your chance for a reply.

\title{
Three-Way Listening Dynamite
}

\section*{Tune in on the most controversial of all foreign broadcasters}

\author{
By C. M. STANBURY II
}


Radio Portugal's monthly program guide, sent free to those who report.

AMONG the most outspoken short wave stations on the air today are Radio Cairo, the Voice of the West from Lisbon, and Radio Katanga. SWL's in the U. S. cannot agree as to whether each is ally or enemy, hero or villain. The reasons for the confusion are easily come by.
Radio Cairo. A few years ago this one followed the Communist line very closely; since then, however, the English language broadcasts at least have shifted strongly toward the neutral center. On June 22, 1962, for example, during Radio Cairo's English news beamed to West Africa (on 17690 kc at 1420 EST), there were numerous quotes from Secretary of State Dean Rusk, plus a long item
on British fears over a Chinese Communist arms build-up.

On July 12, the English news to Europe ( \(11915 \mathrm{kc}, 1645 \mathrm{EST}\) ) played up the withdrawal of U. S. troops from Thailand. Needless to say, Moscow and company did everything possible to minimize this.
On the other side of the coin, every day at 1200 EST Cairo switches a transmitter from 17920 to 17895 kc and calls itself Radio Free Africa, a simulated clandestine station. Its broadcasts on this frequency are designed to stir up rebellion in such places as Kenya and Rhodesia-a legitimate cause, perhapsas well as the Congo: and for the last named, Cairo's chief selling point is Patrice Lumumba, a communist martyr seldom mentioned by moderates and rightists in Africa. Maybe Radio Cairo hasn't reformed after all!

Before you jump to that conclusion, however, note that Radio Moscow is on the same channel, also beaming to Africa, throughout the entire period of Radio Free Africa operation (in English until 1230 EST). In effect, Moscow is jamming RFA: you figure it out.
The Voice of the West is a special English language transmission for North America by the Portuguese National Radio (Emissora Nacional). EN, as it is known in SWL circles, probably uses more names than any other station: for English to Africa and Asia it becomes Radio Lisbon, and its monthly program guide bears the title Radio Portugal (Fig. 1).

On March 7, 1962, shortly after inauguration of this North American service, the Voice of the West signed on with a musical "V" for victory, launched an attack against the new Italian government, and then turned its guns on President Kennedy, finishing up with this: "There are some people who believe Kennedy is holding off nuclear tests until his family-Jackie, Robert, and Ted-are safely at home."
The above is a typical sample. Even the use of the "V" for victory is controversial: this was the rallying call transmitted by Allied stations during World War II. AIthough Portugal did lease bases in the Azores to the U. S.-a year and a half before the end of the war-she remained neutral throughout the conflict.
Claims are made on VOW for Lisbon's nonracialism, which is supposed to set it apart from other fascist nations-such as South Africa. On March 5, however, Africa was described as a "racial hodgepodge" which, if
given independence, would return to its "hazy origins."
Such sentiments have made the Voice popular with some American right wing groups, and its stock is boosted with them by statements like "Democratic governments have been proven incapable of upholding the might of great empires," and that there are Communist advisors around the American Secretary of Defense. However, on May 25, in answer to a listener's question, VOW described Portugal's all-encompassing system of state medicine, considered by these same rightists to be the mark of a socialist society.
Broadcasts are beamed to North America every night at 2100 and 2245 EST on 6025 and 6185 kc ; if neither frequency is heard, try 9740, an alternate channel. Of the three stations discussed here, Lisbon is by far the most easily received.
The Voice of the West is anxious for reports, and any listener who submits one is likely to have a song dedicated to him; this is partly to give the impression that the broadcasts have a large number of supporters in the U. S.

One veteran SWL describes it this way: "They send me two or three program schedules every month, enclosing reception report forms which I do send back once a month as a matter of courtesy . . . don't listen too much to them, not in love with their comments." This listener had a selection dedicated to him on June 6, after being thanked over the air for his "letter."
Radio Katanga. During the first week of July, 1962, the Elisabethville government's powerful international transmitter returned to the air, after a silence of more than six months-it had been destroyed by the UN force on December 6, 1961. Radio Katanga is the station which on May 7, 1961, while supposedly representing a legitimate African government, emphasized that white South African troops were being employed against colored UN forces: five days later, it was


QSL card from Emissora Nacional (alias Radio Portugal, Radio Lisbon, and the Vaice of the West).

TABLE A-WHERE ANO WHEN

quoting in detail UN charges against the racial policies of South Africa and Portugal.

The resurrected RK-which still quotes the South African government-is even less predictable. On July 19, 1962, it quoted a long statement by the UN representative in Elisabethville which concluded with an accusation against Radio Katanga itself, charging it with following one line on its European broadcasts and another-against integration into the Congo-on its African service. FK made no attempt to deny the charge: either it is the most honest broadcasting organization in the world-or is trying to convince its listeners of this-or there is a civil war going on right inside the station.

Without a doubt, Radio Katanga offers the most surprising listening within our torrid triangle. It can be heard on 11870 kc , with news in English at 130 and 1520 EST.


\title{
Selecting the Right \\ Short Wave Receiver
}

\author{
By JERRY SKELIY
}

When you buy that communications receiver, be sure to get a set of heedphones for it. By excluding outside noises, they make for better listening. They also make wee-hour DXing more acceptable to the other members of ycur family.

Photos courtesy
Allied Radio Corp., Chicogo

SHORT wave listening can be one of the most enjoyable and informative of hobbies, but only if you have adequate equipment-a receiver that covers the right bands, has the sensitivity to pull in weak signals, and can separate stations that are close together on the dial.
By learning what makes a receiver a top

performer, you can compare the sets on the market and select the one you want. Keep in mind that the purchase of a communications receiver is something of an investment. A good one depreciates slowly and after four or five years may still be worth half its cost. So resist any temptation to buy off-brands or marginal-performance sets merely because they are low-cost. Stick with widely known names such as those in the table on page 64.

In the table we've listed 12 already-assembled and four kit-type receivers that, together, account for most of the communications receivers sold today. All of them are superheterodynes and use a time-proved circuit that converts the signal frequency to an "intermediate frequency" where large amounts of stable amplification can be applied.

To determine how many r.f. stages a set has, look inside and count the gangs on the funing capacivor. Set shown here has three gangs (arrows), which means there is one r.f. stage, Just two gangs means no r.f. stage, while a four-gang capacitor indicctes two r.f. stages.

We'll explain each of the performance features listed in the table, so that you can see how each contribuies to the set's performance. And you can use the same information to judge sets that aren't in the table, such as models that are no longer built but may still be found in some stores.
Many of the performance features are given in manufacturers' brochures or mail order catalogs, which


Drawing shows all the braadcast bands and what can be heard on them. A receiver with general coverage (such as in Fig. 4A) will bring in all of these. Receivers with non-continuous diols, as in Fig. 4C, will pick up only some.
means you can get a good idea as to a set's quality even before going to a store and trying it out.

How Many Tubes? The first thing to check is the number of tubes. In general, the more tubes, the better the receiver-and the higher the cost. The number of tubes reflects the number of amplifying stages and is a rough index of how much "guts" a set has.

Get the Right Bands. If you want to use your set for all types of listening-news broadcasts from foreign countries, music, radio amateurs or "hams", police calls, aircraft, or Russian satellites-you should steer clear of receivers that cover only the radio amateur bands. Instead you will want a set that, like the sets in the table, has general coverage and will bring in all the bands (Fig. 3, 4).
An R.F. Stage? At least one radio frequency stage is desirable, because it gives the received signal some preamplification before it is subjected to the relatively noisy process of conversion to the intermediate frequency of the superhet. This contributes to the set's sensitivity by helping boost the signal over the noise.

An r.f stage also reduces annoying image response. (A strong signal may be received at two different points on the dial, one of them the correct frequency and the other, the "image", incorrect. Receivers with good image rejection attenuate the image below hearing level. You can easily determine how many r.f. stages a receiver has, even when it doesn't tell you in the catalog, by counting the numer of gangs, or sections, on the tuning capacitors (Fig. 2).

At Least Two I.F. Stages? Intermediate frequency amplifier stages (don't confuse them with the r.f. stages) provide most of a superhet's sensitivity and much of its selectivityor the ability to separate stations.

The i.f. amplifiers operate at a lower fre-
quency than the signal (usually at 455 kc ), and at that frequency tubes and transformers can be designed to give tremendous amounts of stable amplification.

The receiver you buy should have at least two i.f. stages. One stage is barely adequate, and will mean low sensitivity. You can determine how many i.f. stages a set has by checking the set's specifications in a catalog or by looking at its schematic diagram (Fig. 5).

Sensitivity. A sensitive receiver pulls in the weaker signals clearly and is a great help in DXing-trying to pick up distant signals.

Receiver manufacturers do not publish sensitivity ratings, and you would have to be an electronics engineer to figure them out yourself, but the number of i.f. and r.f. stages a set has will give you a rough idea of sensitivity. You'll note from the table that we have evaluated the sets for sensitivity and rated each as either Fair, Good or Excellent.

Selectivity is also difficult to determine unless you're a radio expert. Besides separating close-together stations, it aids the reception of weak signals close to strong ones and improves the ratio of signal to noise. As with sensitivity, look for i.f. stages; we have rated each set in the table as Fair, Good or Excellent in selectivity.

BFO for Code and Satellites. If you want to listen for Morse code (CW) or signals from satellites, your set should have a beat frequency oscillator (BFO). Normally, code signals are poorly audible. The BFO is a special circuit which-when you turn it on"beats" with the code to give an easy-to-read musical pitch to the dots and dashes.

Receivers with BFO will have markings on the front panels such as "Code," "CW," "Pitch Control" or "BFO Pitch."

Other Valuable Features include an " \(S\) " meter, a noise limiter, an antenna trimmer, a crystal calibrator and a phono input:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Performance Guide to Communleations Recelvers} \\
\hline Manufacturer Model No. & Price & \begin{tabular}{l}
Number \\
of Tubree \\
(5)
\end{tabular} & Frequency Range in. Mce. & R. \(F\). Stages & \[
\begin{array}{c|}
\text { I. F. } \\
\text { Stages }
\end{array}
\] & \[
\begin{array}{|l|}
\text { Sensi- } \\
\text { tivity }
\end{array}
\] & \[
\left\lvert\, \begin{aligned}
& \text { Seloc- } \\
& \text { Hivity }
\end{aligned}\right.
\] & \[
\underset{\text { Meter }}{\mathbf{S}}
\] & Antenna Trimmer & Internal
Cryatal
Calibralor \\
\hline National NC60 & 59.95 & 5 & . \(540-30\) & 0 & 1 & F & F & No & No & No \\
\hline \[
\begin{aligned}
& \text { Hallicrafters } \\
& \$ 108
\end{aligned}
\] & 139.95 & 8 & . \(540-34\) & 1 & 2 & 0 & F & No & No & No \\
\hline \[
\begin{aligned}
& \text { Hallierafters } \\
& \mathbf{S \times 1 1 0}
\end{aligned}
\] & \[
\begin{array}{r}
169.95 \\
+\quad 12.95 \text { apkr }
\end{array}
\] & 8. & . \(540-34\) & 1 & 2 & G & E & Yes & Yes & No \\
\hline Hammarlund HQ100AC & \[
\begin{array}{r}
199.00 \\
+\quad 14.95 \text { apkr }
\end{array}
\] & 10 & . \(540-30\) & 1 & 2 & E & E & Yes & Ye & \[
15.95
\]
extra \\
\hline \[
\begin{aligned}
& \text { Hallicrafters (4) } \\
& \$ \times 62 A
\end{aligned}
\] & \[
\begin{array}{r}
395.00 \\
+\quad 19.95 \text { Epkr }
\end{array}
\] & 16 & .540-108 & 2 & 3 & E & E & No & No & No \\
\hline \[
\begin{gathered}
\text { Heath-Kit } \\
\langle R-3
\end{gathered}
\] & \[
29.95
\]
(1) & 5 & . \(560-30\) & 0 & 1 & F & F & No & Ye\% & No \\
\hline \[
\underset{\text { Knight-Kit }}{\substack{\text { R-5 }}}
\] & 59.95 & 6 & . \(540-38\) & 0 & 2 & G & F & No & Yes & No \\
\hline \[
\underbrace{}_{\substack{\text { Knight-Kit } \\ \text { R-100 }}}
\] & 99.95 & 9 & . \(540-30\) & 1 & 2 & \(E\) & E & 12.95
extra & Yes & No \\
\hline \[
\begin{gathered}
\text { Heath-Kit } \\
\text { GC-1A }
\end{gathered}
\] & \[
\begin{gathered}
109.85 \\
(2)
\end{gathered}
\] & \[
{ }_{(3)}^{10 \mathrm{Tr} .}
\] & .550-32 & 1 & 3 & E & G-E & Yes & Yos & No \\
\hline \[
\begin{aligned}
& \text { Lafayotte } \\
& \text { HE } 30
\end{aligned}
\] & \[
\begin{array}{r}
\text { wired }-99.95 \\
\mathrm{kit}-79.95
\end{array}
\] & & & 1 & 2 & & & Yes & Yes & No \\
\hline \[
\begin{array}{r}
\text { Lafayelte } \\
\text { HE-10 }
\end{array}
\] & \[
\begin{array}{r}
\text { wired }=79.95 \\
k \text { it }-84.50 \\
\hline
\end{array}
\] & 9 & & 1 & 2 & & & Yes & No & No \\
\hline \multicolumn{11}{|l|}{\begin{tabular}{l}
Note (1):Cabinet \(\$ 4.95\) extra. \\
Note (2): Supplied with batteries. A.C power supply is \(\$ 9.95\) extro. \\
Note (3): Uses 10 transistors and 6 semiconductor diodes. \\
Note (4): The SX62A has o hi-f oudio system. Also covers the stondard FM band. \\
Note (5): Includes rectiffers and volrage regulator tubes.
\end{tabular}} \\
\hline
\end{tabular}
- The " \(S\) " meter occupies a distinctive place on the front panel (if the set has such a meter) and is calibrated from 1 to 9 ; in some cases, the meter will be marked "Carrier Level." The calibrations indicate the strength of the received signal and are helpful for on-the-nose tuning, since signal strength is greatest when tuning is correct. Not an absolute necessity for average listening, this feature is found on only the more expensive receivers.
- Noise limiter. This circuit minimizes the effect of extraneous electrical noises. If the receiver has one, a front panel switch will be marked "Noise Limiter" or "ANL" (for Automatic Noise Limiter).
- Antenna trimmer. This is another front panel control which almost always is marked either "Antenna" or "Antenna Trimmer." Important to top performance, it tunes the antenna and the receiver input circuit together for better signal energy transfer. (You will have difficulty getting clear reception on distant stations without a good out-door antenna. Weaker signals may represent an energy of less than a few millionths of a millionth of a watt. Give your receiver a break by collecting as much as possible of this energy in a good antenna before asking the receiver to go to work on it.)
- Crystal calibrator. Inevitable variations in mass-produced parts, together with changes in temperatures, humidity and line voltage, produce inaccuracies in the tuning dial scale. A good way to overcome this is by use of a
precision frequency source and its harmonics as dial calibration reference points. The receiver can then be adjusted to bring in stations at the correct spot on the dial. Receivers that provide internally for a crystal calibrator have a "Calibrate" marking on a front panel switch.
- Phono input. This is an unessential extra that permits the use of the receiver's amplifier and speaker with accessory record changers, FM tuners and such (Fig. 6).
Finding the Right Dealer. You can check out a receiver for the preceding features merely by looking at a catalog or brochure.
But you should also put it through its paces to see how it performs. This can be done only by going to a dealer (or by purchasing a set through a mail order house with a moneyback guarantee if you're not satisfied).
It's important to select your dealer carefully. Check your classified telephone directory for names of radio parts jobbers or ask a local radio amateur where he shops.
Be wary of department stores and jobbers who serve radio-TV servicemen exclusively, because your dealer should have a service department to back up a new set's guarantee. He should also have a wide selection of sets.

Through the Paces. Once you are ready to give a receiver its on-the-air test, turn it to short wave broadcast and amateur signals. These should be heard on one band or another at any time of the day or night. If you can't hear any signals, try another set.
Next, rotate the band selector switch. Some


Here's how you can easily tell if a set has general coverage, will pick up all the bands shown in Fig. 3. In 4A, finger points to 4.5 megacycles, which is at extreme left of the second band on the dial. In 4B, finger points to 4.6 megacycles, which is on extreme right of the third band; thus there is no gap between the bands. In 4C, though, note that the top band runs from 3.5 to 4.0 , while the band below it picks up at 7.0. This receiver covers only the ham bands.


It's easy to tell how many i.f. stages a communications receiver has. Just take a close look at its schematic diagram. The stages (arrows) will be clearly labeled as shown in this section of a typical schematic. This set has two i.f. stages.
signals or noise should be heard on all bands. No band should be \(100 \%\) dead.

Now, after tuning in a station, rotate all the controls and throw all the switches-one by one-listening carefully as you do so. Each control or switch should have some audible effect on what you hear.

Potentiometer controls should not give scratchy sounds when they are turned. If one does, it probably is worn or defective.

Last, turn the tuning dials over their entire range. They should move easily with no noticeable slack motion or backlash.

What About Portables? If you don't need the portability that comes with a transistorized receiver, you probably would do well to avoid it and buy a regular tube set. The less expensive of the transistor models-those costing up to about \(\$ 90\) - do not have the sensitivity of a comparable tube set.

The more expensive transistor portables charge a high premium for the combination of portability and good performance-yet may lack many features desired by DXers.

Buy a Used Set? A used receiver may be a good buy, but only if it comes with the standard 90-day new set guarantee-in writ-


Receivers with a phonograph input will have the word "Phono" on a front panel switch position, but the jack will be on back of the set as shown here. Don't confuse the "Phono" jack with "Phones"which designates the headphone ject: as shown in Fig. 1.
ing-covering parts and labor. Used sets should be purchased only from those jobbers who have service facilities and will give you an additional guarantee in writingstating that you can get a full refund within 10 days if you are not satisfied with the set.

If you plan on buying a used receiver, you should look for the same features listed in the table, but be sure to give it a real wring-out during the on-the-air check. If possible, take an experienced radio amateur along when you go to buy the set. He'll probably be able to assess it for you pretty well.

\title{
Experimenter's Transistor Breadboard
}

\author{
By ART TRAUFFER
}


Front view shows breadboard sel up as crystal detector with one stage of audio. Rear view shows power transistor bolted directly to copper heat sink mount. Engrave the symbols with a ball point pen.


RANSISTORS and small diodes are fragile and easily ruined by excessive handling. With this miniature breadboard you can instantly test circuits in any combination without soldering and unsoldering leads.

The power transistor is mounted on a copper bracket which doubles as a heat sink, and the clips are marked so you can't make a mistake in your connections. Size and placement of the parts are not critical. For the base use a \(6 \times\) \(2 \times 1 / 2\)-in. piece of wood. Mount the clips with \(3 / 8-\mathrm{in}\). rh wood screws. Solder a general purpose diode (Sylvania 1N34A or equal) directly to a pair of the clips. Solder three short wire leads to the terminals of a three transistor socket, and run these leads to the three Fahnestock clips.
Bend the power-transistor bracket from \(1 / 32\)-in. sheet copper. The "C" clip goes over the long ear of the bracket. Mount the power transistor (Motorola 2N555, RCA 2N301 etc.) directly to the copper surface, using two \(\% / 32\) \(x^{3 / 8}\)-in. rh machine screws and nuts. Do not


MATERIALS LIST-
EXPERIMENTER'S TRANSISTOR BREADBOARD
\begin{tabular}{|c|c|}
\hline Amt. & Size and Description \\
\hline 1 & general-purpose germanium diode (Sylvania 1 N34A, etc.) \\
\hline 1 & general-purpose PNP transistor (Raytheon CK722, etc.) \\
\hline 1 & AF power amplifier transistor (Motorola 2N555, RCA 2N301, etc.) \\
\hline 1 & Raytheon CK722 transistor socket \\
\hline 2 & terminal clips for power transistor \\
\hline 1 & \(4 \times 21 / 2 \times 1 / 32^{\prime \prime}\) sheet copper (heat sink for power transistor.) \\
\hline 2 & \(6.32 \times 3 / 8^{\prime \prime}\) ch with hex nuts \\
\hline 8 & \(3 / 4 \times 5 / 16^{\prime \prime}\) Fahnestock clips \\
\hline 9 & round-head wood screws \(3 / 8 / 8\) long \\
\hline 1 DC & \(6 \times 2 \times 1 / 2^{\prime \prime}\) hardwood \\
\hline
\end{tabular}
solder directly to the emitter and base pins on the power transistor. Use lugs removed from a miniature tube socket.

If you work with more complex circuits, you'll find that several of these boards will be handier than one large breadboard.


\section*{It's New - It's Big - It's Better Than Ever It's From the "World's Hi-Fi \& Electronics Shopping Center"}

The exciting, all-new 1963 Lafayette Catalog features thousands of items for the audiophile, experimenter, technician, hobbyist, serviceman
. . . Citizens Band, Tape Recorders, Stereo Hi-Fi, Ham and Amateur Equipment, and much more. No Money Down on Lafayette's Budget Plan

ONLY LAFAYETTE OFFERS THESE OUTSTANDING EXTRAS: VSATISFACTION GUARANTEED OR MONEY REFUNDED VLOWEST PRICES VEXCLUSIVE Lafayette kits vlargest stock selection v buy the easy-way with easy.pay...


\section*{AC Experiments with Series Circuits}

Why voltage, unlike that in de, can often be much greater than the amount applied- 10 tests you can make with simple, safe, and inexpensive equipment


These basic passive components plus a 6.3 -volt transformer and an ac voltmeter are all that's needed for some challenging ac experiments.

\author{
By FORREST H. FRANTZ SR.
}

ALTERNATING current (ac) circuits are excitingly different from direct current (dc) circuits. The de circuit situation with a steady voltage applied at a relatively long time after any switching has occurred, is influenced only by the circuit resistance. But in a circuit operated from an ac power source, capacitance and inductance also influence steady state conditions.
The sum of voltages across the elements in series ac circuits add up to a voltage greater than the applied voltage if inductance and/or capacitance are present. And that voltage can be many times the applied voltage if inductance and capacitance with proper value relationships exist in the circuit.

Equipment Used. You can conduct the experiments that follow with capacitance and resistance substitution boxes (available at most radio shops) or, if preferred, you can just as readily use loose capacitors and resistors.
For the inductance, we used an inexpensive
universal output transformer with the secondary left open (no connections).
In addition to these components forming the passive elements of the series ac circuit (Fig. 1), you'll need a power source and ac voltmeter. Any 6.3 -volt filament transformer can provide the power. It provides an exact frequency of 60 cycles since the power line frequency is well regulated.

The low voltage is preferable because it keeps the larger voltages which you'll encounter at resonance down to about 35 volts. If you were to use a 25 -volt power supply, the voltage across the capacitor at resonance would be close to 150 volts! A transformer has the additional safety feature of isolating the circuit from the ac line and preventing accidental shock if you should become grounded in any way.
Many experimenters have their own voltmeter. I used a Heathkit MM-1. If you wish to buy one, you might check the catalogs of the mail order houses and kit companies for a meter to fit your needs and pocketbook. You should select a vacuum-tube voltmeter (VTVM) or a multimeter with an ac sensitivity of 5000 ohms per volt or better. You'll


A CIRCUIT

\(V_{R}=I R\)

Series R-L arrangement.

\section*{B \\ VECTOR DIAGRAM}
have considerable error if you use a meter with only 1000 -ohm per volt sensitivity.

\section*{Series Resistance:}

\section*{Inductance (R-L) Circuit}

First connect the resistance substitution box and the inductance in series, using brown and blue leads, then connect the leads to the transformer 6.3 -volt secondary as in Fig. 2A. Measure the voltage across the coil (IXLcurrent times reactance) and the voltage across the resistor (IR-current times resistance) for R values of \(1000,2200,4700,6800\), and 10,000 ohms. Record IXL and IR.

You'll note that IXL plus IR is greater than V (measure V) for most values of \(R\). Why is this so? Can you deduce anything about ac circuits from your data?

\section*{PROJECT 1}

Vector Diagrams. Here's a partial explanation: Current lags the induced voltage in an inductive circuit. The amount of lag is defined by a phase angle \((\ominus)\) and is \(90^{\circ}\) for a pure inductance. The phase angle in a resistance is \(0^{\circ}\), so resistor current and voltage are in phase.

These relationships show up in a vector diagram, as in Fig. 2B. IR and IXl are drawn to scale for a typical set of \(R\) and \(L\) values, with IXL leading IR by \(90^{\circ}\). Now the value of IXL is the magnitude of the reactive voltage only and should be symbolized more properly as VL. If the vector diagram is completed, the voltage V is the resultant. The angle between V and IR is the phase angle ( \(\Theta\) ).

Now, draw the vector diagrams for the data
you took previously, ignoring the measured value of \(V\). You might, for example, let 1 in . equal one measured volt. Complete the diagrams to solve for \(V\), then compare the values thus obtained with that of the measured V. You'll note that there's a difference. Why is this so? Write a short explanation as to why you may have obtained these seemingly erroneous answers, then put it aside for comparison with the explanation which will be given later.

\section*{PROJECT 2}

Understanding Circuit Computations. The preceding project has probably alerted you to some of the possible computations for this circuit. First, the vector addition of VL (which is IXL) and VR (which is IR) to obtain the resultant V (which is IZ as will be seen shortly), can be solved analytically. Units used are V, volts; \(\ominus\), degrees; I, amperes; XL, ohms; \(R\), ohms, and \(L\), henries:
(1) \(\mathrm{V}=\boldsymbol{V} \overline{\mathrm{V}}^{2}+\overline{\mathrm{VL}}{ }^{2}\)
(2) \(\tan \theta=V_{l} / V_{r}\)

The fact is that
(3) \(\mathrm{VL}=I X \mathrm{~L}\)
and
(4) \(\quad V_{R}=I R\)
have already been mentioned.
From this,
(5) \(I=V_{R} / R\)
(6) \(\mathrm{XL}=\mathrm{VL} / \mathrm{I}\)

Now, what is XL ? It is the inductive reactance of the coil. The inductive reactance is a function of the inductance of the coil and the frequency of the applied voltage.
(7) \(\mathrm{XL}=2 \pi \mathrm{fL}\)


Series R-C arrangement.


For our experiment, the frequency \(f\) is 60 cycles. Therefore \(2 \pi \mathrm{f}\) is 377 for our problems. I'll use 377 wherever \(2 \pi f\) is involved in most subsequent formulas and calculations and leave substitution of \(2 \pi f\) when a different frequency is to be used as a student responsibility. Then, for our case
(8) \(\mathrm{XL}_{\mathrm{L}}=377 \mathrm{~L}\), and
(9) \(\mathrm{L}=\mathrm{X}_{\mathrm{L}} / 377\)

Now what about this " Z " bit? Z is the impedance of the circuit in ohms. It is the vector sum of the resistance and the reactance. Hence,
(10) \(Z=\sqrt{R^{2}+X L^{2} \text {, and }}\)
(11) \(\tan \vartheta=X L / R\)

Note that equations 1 and 2 are equations 10 and 11 with all terms multiplied by I. Hence,
\[
\begin{array}{ll}
\text { (12) } & \mathrm{V}=\mathrm{IZ} \text {, and } \\
\text { (13) } & Z=V / \mathrm{I}
\end{array}
\]

Has any of this explanation given you a clue as to why you got erroneous results in Project 1?

\section*{PROJECT 3}

Examples of Circuif Computation. At this point, let's try an example. Take the data for the series circuit where \(R=4700\) ohms. I got values of \(V_{R}=4.2\), and \(V_{L}=3\). Applying the formulas presented in Project 2, and rounding off to two significant figures:
\begin{tabular}{ll} 
from & (1) \(\mathrm{V}=\sqrt{4.2^{2}}+3^{2}=5.2\) volts \\
from & (2) \(\tan \Theta=3 / 4.2, \ominus=35.6^{\circ}\) \\
from & (5) \(I=4.2 / 4700=.0009\) amp \\
from & (6) \(X \mathrm{X}=3 / .0009=3300\) ohms \\
from & (9) \(\mathrm{L}=3300 / 377=8.8 \mathrm{henries}\) \\
from & (13) \(\mathrm{Z}=5.2 / .0009=5800\) ohms \\
check & (10) \(\mathrm{Z}=\sqrt{(4700)^{2}+(3300)^{2}}\)
\end{tabular}

The latter check equals 5700 ohms, which is adequate since we've been rounding off numbers. Why equations 10 and 13 check while measured V and computed V don't check will be explained in the next project.

At this point, perform the computations, using your data for \(R=2200 \mathrm{ohms}\).

\section*{PROJECT 4}

The Fallacy. Use the ohmmeter function of your multimeter to measure the resistance of L , while L is disconnected from the circuit. You'll find the resistance is roughly 200 ohms. This should give you the first clue to the difference between the computed V and the calculated V. In calculating V, we assumed that L was a pure inductance. In practice, however, this is impossible because a length of wire exhibits resistance.
Furthermore, when a length of wire is wound into a coil, there is capacitance between turns. In the case of our experiment, the capacitance between turns introduces more error than the resistance of the coil.
There is an additional error due to the loading of the circuit by the meter during the measuring process. This error plus others mentioned above introduces an error of about \(8 \%\) to \(15 \%\) in the measured and calculated values of \(V\).

\section*{Series Resistance:}

\section*{Capacitance (R-C) Circuit}

If the facts of practicality in the preceding projects are puzzling you may relax and smile for what comes next. The inductance and resistance associated with practical capacitors is negligible at 60 cycles. Consequently, a practical capacitor looks like an ideal capaci-


Series R-L-C arrangement.
tor. In experiments described here, then, the error will be due to meter-loading during measurement only. For a 5000 -ohm-per-volt meter this should be less than \(8 \%\).

Connect the circuit as shown in Fig. 3. Set R at 6800 ohms on the resistance box. Record Vc and Vr for \(\mathrm{C}=.1, .22, .5\), and .72 microfarad ( \(m f d\) ). Note that the capacitance box is disconnected and the external .5 mfd capacitor is used for the .5 mfd measurements. The .5 mfd capacitor is connected across the capacitance box (set to .22 ) to make the .72 mfd measurements. Measure V and record the value.

\section*{PROJECT 5}

Vector Diagram for R-C Circuit is shown in Fig. 3B. Note that the Vc vector is directed downward. Current leads in a capacitive circuit.

Draw vector diagrams for this data as you did for the data in Project 1. Then determine V from the vector diagrams. The error between the measured \(V\) and the calculated \(V\) is much smaller.

\section*{PROJECT 6}

Understanding Circuit Computations. The applicable formulas are:
\begin{tabular}{lll} 
(14) & \(\mathrm{V}=V \mathrm{VR}^{3}+\mathrm{Vc}^{2}\) \\
(15) & \(\tan \theta=V \mathrm{~V} / \mathrm{VR}\) \\
(16) & \(\mathrm{Vc}=\mathrm{IXc}\) \\
(17) & \(\mathrm{VR}=\mathrm{IR}\) & \\
(18) & \(\mathrm{I}=\mathrm{VR} / \mathrm{R}\) & \\
(19) & \(\mathrm{Xc}=\mathrm{Vc} / \mathrm{I}\) & \\
(20) & \(\mathrm{Xc}=1 /(2 \pi \mathrm{fC})\) & \\
(21) & \(\mathrm{Xc}=1 /(377 \mathrm{C})\) & (for \(\mathrm{f}=60\) \\
(22) & \(\mathrm{Cycles}=1 /(377 \mathrm{XC})\) & (for \(\mathrm{f}=60\) \\
& cycles)
\end{tabular}


A CIRCUIT


\section*{B VECTOR DIAGRAM}
(23) \(\mathrm{Z}=\sqrt{\bar{R}^{3}+\mathrm{Xc}^{2}}\)
(24) \(\tan \theta=X C / R\)
(25) \(V=I Z\)
(26) \(\mathrm{Z}=\mathrm{V} / \mathrm{I}\)

These units are V, volts; I, amperes; R, ohms; Xc, ohms, C, farads, and Z, ohms.
The matter of making most of the computations is pretty much in line with the examples of Project 3. The generation of a group of examples corresponding to the set for the R-L circuit given in Project 3 is a good exercise for the student. There is considerable similarity in most cases.

\section*{PROJECT 7}

Another Experiment. Adjust circuit capacity to .72 mfd . Then record Vr and Vc for \(\mathrm{R}=2.2 \mathrm{~K}, 4.7 \mathrm{~K}\), and 6.8 K .

Now you can draw vector diagrams for this data. Compare the values of \(V\) obtained from the vector diagrams with the measured values of V .

If you wish additional practice, you may perform the computations for all sets of data. The more problems you do, the better you get to understand the subject. With this experimental set-up, you can get a large amount of

\section*{dage for practice problems. \\ Series Resistance-InductanceCapacitance (R-L-C) Circuił}

Hook up the series R-L-C circuit as in Fig. 4 and 4 A . Set \(\mathrm{R}=2200\) ohms and record \(\mathrm{V}_{\mathrm{L}}\), Vc , and Vr for \(\mathrm{C}=.1, .22,15\), and .72 mfd . Measure and record \(V\).

In the vector diagram (Fig. 4B), you can see that Vl and Vc are \(180^{\circ}\) out of phase and hence can assume large values. What is happening here? The capacitor and inductor al-


Circuit for resonance experiment. In practical circuits,
t has internal resistance and, therefore, limits current.
Series R-L-C circuit with minimum \(R\) (resistance of the coil only) causes 32 volts to appear across the capacitor, though only 6 volts are applied.
ternately store and dump energy on each other. A special relationship exists between Vc and VL at resonance, a phenomena that we'll discuss later.

\section*{PROJECT 8}

Draw the vector diagrams for the series R-L-C circuit.

\section*{PROJECT 9}

New Formulas and Practice. The formulas presented earlier apply for the most part. However, there are new formulas for \(V, \ominus\), and Z :

\section*{Desig.}
capacitance, 1 to .7 mfd (Lafayette TE- 16 capacitance substitution box, \(\$ 2.95\), and a Sprague \(2 E P \cdot P 50.5\) mfd., \(200 \cdot v\). capacitor, 364 ).
1. inductance (Use the brown and red leads on Lafayette TR-12 output transformer, \$1.19). Tape or keep the red lead out of the wiring. Leave the secondary open. resistance, 1 K to 10 K (Lafayette \(\mathrm{TE}-17\) resistance substi. tution box, \$3.95).
\(\mathbf{6 . 3 - v}\). filament transformer (Lafayette TR-11, 89¢).
\(A C\) voltmeter, 5000 ohms per volt or better sensitivity. (Heathkit MM.1, \$33.95). Least expensive suitable unit is Lafayette TK-10, \$11.95.
Sources: Lafayette Radio, 111 Jericho Turnpike, Syosset, L. 1., N. Y.

Heath Co., Benton Harbor, Mich.
(27) \(\quad V=V \overline{V^{2}}+(V L-V c)^{2}\)
(28) \(\tan \theta=\left(V_{L}-V_{c}\right) / V_{R}\)
(29) \(\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{Xc}\right)^{2}}\)

Now you can perform a complete group of computations for one set of your data.

\section*{PROJECT 10}

Resonance. Removing \(R\) from the circuit will change the circuit to that shown in Figs. 5 and 6. Then adjust C till Vc reaches a maximum value. Note that Vc will be somewhere between 30 and 40 volts. On measuring VL, you will find it is nearly equal to Vc .

When \(V_{L}=V c\), the circuit is in resonance. This occurs when \(\mathrm{XL}_{\mathrm{L}}=\mathrm{Xc}\). A relationship of interest at the resonant frequency fo is:
(30) \(\quad\) fo \(=1 /(2 \pi V L C)\)

The manipulation of this formula to solve for \(L\) and for \(C\) is left as an experimenter exercise.

We haven't used an ideal inductance, so you'll notice some errors (seeming contradictions) in some of the voltages computed. But since we went into that subject in relative detail earlier, you're prepared for it at this point and know why it occurs.


> This compact ac-dc receiver features good sensitivity, better than average selectivity, and simplified construction. It has an adjustable tuning range of 85 to 550 kc . and is easily modified for broadcast-band reception

By JOE A. ROLF, K5JOK

THE circuit of this economical receiver (see Fig. 4) employs two miniature high-gain TV tubes. The 6AN8 is a regenerative detector; the pentode section of the 6AU8 is an audio amplifier. The triode of the 6AU8 serves as an ac-dc type rectifier.

The heart of the circuit is the detector, a regenerative cathode-follower type commonly known as the "Regenode." If you're not familiar with this hybrid circuit, here's how it works: The pentode section of the 6AN8 is a conventional grid-leak detector, with the exception of the signal grid which is separated from the tuned antenna circuit by the cathode-follower connected triode section of the tube. This arrangement permits a degree of selectivity not possible with the detector
grid connected directly to the antenna circuit, since the signal-grid loads the tuned circuit and reduces its Q , or selectivity ability. The cathode-follower isolates the detector from its input circuit and allows a great improvement in selectivity. The circuit operates smoothly, is easily adjusted, and eliminates hand-capacity effects common to most regenerators. These advantages are particularly desirable in a LW receiver.

Since hand capacity does not affect operation, an all-wood chassis constructed with simple hand tools can be used. Chassis details are shown in Fig. 5. Large holes (for tube sockets and controls) can be made with a coping saw; fastener holes can be made with a hot ice-pick in the absence of a drill. A


YOU'LL be pleasantly surprised at the number of interesting signals to be heard below the standard broadcast band, though at first they may sound like nothing but jumbled dots and dashes intermixed with weird howls and squeals. Careful listening, however, will reveal this apparent bedlam to be important communication services which make unusual listening and challenging DX.

The main divisions of the 10 Kc . to 535 Kc . band are shown in Table A. It is occupied mainly by aeronautical and marine services, although \(150-535 \mathrm{Kc}\). is part of the standard BC band in Europe and Asia. However, without discounting the possibility of logging some of these BC stations, the marine and aeronautical stations are of prime interest to most LW listeners.

\section*{What to Listen To on LW}

\section*{The long waves provide up-to-the-minute}
reports on weather and flying conditions,

> code practice and some good DX

The most popular are the navigational aids, or radiobeacons, heard between 200 Kc . and 405 Kc . Some are marine beacons, others aeronautical. Both employ very slow amplitude modulated code and are easily distinguished from one another by their signals.
Marine beacons usually transmit their call signs continuously in an omni-directional pattern. In some cases the call, consisting of from two to four letters or numerals, is separated by a number of dashes. Many marine beacons can be heard constantly over a considerable range, while the less powerful can be logged at great distances under favorable conditions.
Aeronautical range stations transmit a combination \(\mathrm{A}-\mathrm{N}\) signal in a four-leaf pattern like that of Fig. 1. They identify themselves every thirty seconds and employ two pairs of anter nas to obtain the four-leaf radiation pattern. The transmitter is operated continuously and is alternately switched between the two antenna systems so that an \(A\) (dit dah) is radiated in the directions marked \(A\) in Fig. 2, and an \(N\) (dah dit) in the directions marked \(N\). Midway between the A and N patterns, the signals merge as a steady tone which aircraft follow to or from the station. If the pilot leaves this course, he will hear either the \(A\) or the \(N\).
These radiobeacons offer an unlimited
metal chassis will afford more compact construction, but a wooden panel and cabinet should be used to avoid accidental grounding of the chassis.

Construction is not critical and will pose no difficulty if the general layout shown in Figs. 2, 3, and 5 is followed. Keep RF and AF leads separated and away from ac leads. This is best accomplished by wiring the filaments and power supply first, then the AF and detector stages.

Ground connections are made to solder lugs mounted to the socket and tuning capacitor fasteners. Components R4, R6, R9 and R10 mount on a 7 -lug terminal strip at the rear underside of the chassis (see Figs. 3 and 4). The filter capacitor, C11, can be wedged between the 6AU8 socket and chassis leg, or secured with a mounting clip. Two sections of this capacitor are used in the power supply
filter, the third is used as a cathode bypass for the audio stage.

Other components under the chassis, except R3, C7 and C9, mount to respective tube sockets. Capacitor C9 is connected from J2 to the grounded terminal on R5. Resistors R3 and C7 connect to a machine screw and solder lug placed between L1 and C2. One lead of L2 connects to a solder lug on the same screw on the chassis top.

The antenna trimmer, C 1 , is secured by the antenna terminal mounting screw as shown in Fig. 3. This component requires only infrequent adjustment, but it can be mounted on the front panel for easier access, if desired.

Inductance L1, a standard TV replacement coil, is mounted last. Before inserting the core, as explained in the manufacturer's instruction leaflet, thread on the \(5 / 18\)-in. mounting clip and remove \(1 / 2 \mathrm{in}\). from the slotted

TABLE A-LONG WAVE ALLOCATIONS
\begin{tabular}{|c|c|c|c|}
\hline quency ( Kc. ) & Communications Service & Sunset Skip & Night DX \\
\hline 10-14 & Radionavigation & \multirow{4}{*}{none} & \multirow[b]{3}{*}{4 am} \\
\hline 14-200 & Fixed Public Services and Coastal. Marine CW & & \\
\hline 200-283 & Aer onautical Beacons and Communications & & \\
\hline 285-325 & Marine Radiobeatons & & to \\
\hline 325-405 & Aeronautical Beacons and Communications & \multirow[t]{3}{*}{\[
\begin{gathered}
10 \mathrm{pm} \\
10 \\
2 \mathrm{am}
\end{gathered}
\]} & \multirow[t]{3}{*}{7 am} \\
\hline 405-415 & Radio Direction Finding & & \\
\hline 415-490 & Coastal and Marine CW & & \\
\hline 500 & International Calling and Distress Frequency & \multirow[t]{2}{*}{\begin{tabular}{l}
2-4 \\
hours \\
after \\
sunset
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
11 \mathrm{pm} \\
\text { to } \\
7 \mathrm{am}
\end{gathered}
\]} \\
\hline 510-535 & Wisc. Radiobeacons & & \\
\hline
\end{tabular}

Note: Frequencies between 150 Kc . and 535 Kc . also used by foreign \(B C\) stations.
source of unusual DX. At first sight, these stations seem to offer poor DX since most are relatively low powered and have a daytime range of less than 200 miles. However, their range is greatly increased at night-best times for night DX are given in Fig. 1. These hours will vary somewhat with the seasons, with the choicest DX being heard from early fall to late spring.

Above 325 Kc . sunset skip is often heard for a half-hour during early darkness. Notable examples are PJG, 343 Kc . in the Netherlands Antilles; ASN, 350 Kc . on Ascension Island; and SWA, 406 Kc . from Swan Island.

Since beacons identify continuously or every thirty seconds, less than a minute is required to log a station. However, in order to determine the locations of the stations you
table b-STATION LISTS
The Airman's Guide Superintendent of Documents, Washington 25, D. C. \(25 ¢\) per copy. A bi-weekly publication listing all U.S. aeronautical radio beacons.

Location Identifiers Superintendent of Documents, Washington 25, D. C. \(\$ 1.50\) for copy and one-year supplement service. General listing of all domestic beacons.

Broadcasting Stations Superintendent of Documents, Washington 25, of The World, Part D.C. \(\$ 2.00\). Includes European LW broadII, According to casting stations.
Frequency
Air Navigation
Radio Aids
Department of Transport, Air Service Branch. Ottawa, Ontario, Canada. Complete list of Canadian Radio Beacons, published every two months.

Radio Facility Charts ACIC. USAF, 2nd \& Arsenal Streets, St. Louis
Caribhean \&
South America 18, Mo. Ore year subscription \(\$ 3.50\). Listine of Caribbean \& South American beacons.

Radio Navigational Aids

Hydrographic Office, U. S. Nary. An annual publication listing worldwide marine beacons.

List of Coast Stations Secretary General. International Telecommuni( 4.10 Swiss francs) cations Union, Geneva, Switzerland. Very comList of Ship Stations plete listings of worldwide stations.
(12.80 Swiss francs)

List of Call Sions
(21 Swiss francs)
hear, you need a reference log listing the stations you are interested in. Such listings can be purchased (see Table B).
Range stations also transmit verbal weather reports for air fields in their area 15 minutes before and 15 minutes after the hour.
In addition to radiobeacons, many CW stations operate on long waves for maritime, aeronautical, and public service communication. For the CW enthusiast, these are interesting to copy and the slower stations, sometimes sending as slow as eight words a minuite, provide plenty of code practice. Many good DX signals can be heard between 415 Kc . and 500 Kc ., particularly on the 500 Kc . international calling and distress frequency. The frequencies below 200 Kc . are also widely used by public service and maritime CW stations.
end of the core adjustment screw, otherwise it will protrude below the chassis when the coil is mounted. Clamp the section to be removed in a vise and cut it off with a hacksaw, then cut a new screwdriver slot. Take care not to break or fracture the fragile ferrite coil.

Inductance L2 consists of \(35^{\circ}\) turns of \#26 (or smaller) enameled wire scramble-wound over a \(9 / 1 ;\) in. ID tube which slides freely over L1. If not available, this form can be made by winding four or five layers of moist gummed tape, sticky side out, over L1. When dry, slip the tube off and trim to proper length with a razor blade. With L2 in place, secure L1 to the chassis with a bead of Duco cement.

For maximum sensitivity, the position of L2 on L1 should be adjusted for the individual receiver. This simple adjustment is well
worth the effort and can be made with a long antenna, 455 Kc signal generator, or a BCB receiver with a 455 Kc intermediate frequency. If possible, use a signal generator or BCB receiver, since this will permit adjustment of L2 and the core of L1 at the same time.

Short out L2 temporarily by connecting a shor't piece of wire from the R3-C7 solder lug to pin No. 7 of the GAN8 socket. Turn the core adjustment screw full counterclockwise and connect the antenna, signal generator, or BCB receiver to the antenna terminal.

If a \(B C B\) set is used, tune to a strong \(B C B\) station and turn the set's volume down. Connect a short piece of insulated wire to your LW receiver antenna terminal and place it near the underside of the BCB set's IF tube socket or IF transformer to hear the 455 Kc IF signal of the BCB receiver.


Topsida of the receiver's Masonite chassis. The antenna coil, 11 , is mounted so that its slug is adjusted from below the chassis.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{MATERIALS LIST-LONG WAVE RECEIVER} \\
\hline Desig. & Description & Desitg. & Description \\
\hline C1 & 9 to 180 mmf trimmer capacitor & & \\
\hline C2 & 10 to 365 minf variable capacitor, standard single-gang TRF type & ,12 & antenna terminal post, of Fahnestock clip \\
\hline C3 & .01 mfd dise ceramic & J2 & standard phone Jack \\
\hline C4 & 100 mmf mica & L & Long Wave: Merit MWG.9 Width or Linearity coil, 3 to \\
\hline C5 & . 001 mmf disc ceramic & & \\
\hline C6 & 500 mmf mica & L2 & Broadcast: Ferri-loopstick BCB antenna cail (see text) \\
\hline \({ }^{C} 7\) & . 01 mfd disc ceramic & L2 & Long Wave: 35 turns \#26, or smaller. enameled wire scramble wound on \(9 / 1^{\prime \prime} 10 \times 3 /{ }^{\prime \prime}\) form (see text) \\
\hline C8
C 9 & .01 mfd dise ceramic & & Broadcast: 3 turns \#26, or smaller, enameled wire on ad \\
\hline C10 & . 01 mfd disc ceramic & & justable form (see text) \\
\hline C11 & \(40.40 .40 \mathrm{mfd}, 150\) wv capacitor, 3 -section electrolytic filter & RFCl
SW1 & 2.5 mh. RF choke (National R-100, or equivalent) on R7 \\
\hline R1 & \(6.8 \mathrm{~K}, 1 / 2\) watt resistor & T1 & filament transformer, \(63 \mathrm{vct}, 1.2 \mathrm{amp}\) (Stancor P-6134 or \\
\hline R2 & \(1 \mathrm{mej}, 1 / 2\) watt & T2 & \\
\hline R3 & \(33 \mathrm{~K}, 1 / 4\) watt & 12 & optional-for speaker use only; \(5000 / 3.2\) ohm, 3 watt, 40 \\
\hline R4 & 68 K .1 watt & V1 & 6ANs, output transformer. (Merit A-3026, or equivalent) \\
\hline R5 & \(1 \mathrm{meg}, 1 / 4\) watt volume control witls SPST switch (Mallory U. 53 Miduetrol with US 26 & V2 & 6 6AUS \\
\hline R6 & \(100 \mathrm{~K}, 1 / \mathrm{p}\) watt with US-26 switch, or equivalent) & 1 pc & \(1 / 8 \times 41 / 2 \times 6^{\prime \prime}\) Masonite (panel) \\
\hline R7 & \(100 \mathrm{~K}, 1 / 4\) watt, volume control (Mallory U.41 Miduetral & 1 pc & \(1 / 8 \times 4 \times 6^{\prime \prime}\) Masonite (chassis top) \\
\hline & or equivalent) & 2 pes & pine strip, \(3 / 4 \times 11 / 8 \times 4^{\prime \prime}\) ( chassis sides) \\
\hline R8 & 82 ohm, \(1 / 2\) watt & & two miniature 9 -pin tube sockets \\
\hline R9 & \(5.6 \mathrm{~K}, 1\) watt & & hardware, power cord, dial, knobs, etc. \\
\hline
\end{tabular}

With the volume control at maximum and the regeneration control set at half-scale, place the tuning capacitor about \(85 \%\) open and turn L1's core clockwise until the 455 Kc signal is heard. Adjust the regeneration control for maximum volume and mark its position. This is the detector's most sensitive
point and will determine the position of L2. Remove the jumper across L2 and slide the coil up or down over L1 until regeneration (signal distortion) occurs just above the point previously marked on the regeneration control. If the detector fails to regenerate, reverse the leads on L2.


Under-chassis view, showing placement of components.


This receiver's tuning range, from 85 to 550 Kc , is covered in two adjustments of the core on L1. When set to receive 550 Kc at C2's minimum capacity, the receiver will tune down to about 200 Kc . The range from 85 to 200 Kc is tuned when the slug is almost fully inserted into L1. Overlap on both bands will
permit easy bandchanging once the operator is familiar with the stations heard around 200 Kc. On the lower band, L2 may require slight readjustment for best reception of weak signals.

For BCB reception, a ferri-loopstick is used for L1. Inductance L2 consists of three turns


C OPTIONAL CHASSIS COVER
and adjustment is similar to that of LW operation. The lead from C 1 should be connected to the grid end of the loopstick.
A high, long-wire antenna will give best all-'round LW reception, though a short length of wire will give satisfactory local reception. Capacitor C1 should be adjusted for best reception on each band and the receiver should not be grounded.
In some localities, interference from strong BCB stations may be bothersome, a trouble commonly encountered with LW receivers having only a single tuned circuit. Such in-

terference can be minimized by reducing the antenna coupling or, in severe cases, by the use of the simple Pi antenna tuner (shown in Fig. 6). The tuner can be built on a small pine block. Adjust C 1 and C 2 for minimum BCB interference.

Four or five feet of hookup wire is sufficient antenna for BCB reception. The receiver will give good loudspeaker volume on the BC band and on the stronger LW stations. Due to the low power used by most LW stations, however, headphones are recommended for serious LW listening. For speaker operation plug a \(5000-3.5\) ohm, 3 -watt, output transformer into J 2.

\section*{Inverted Brush Cleans Gun's Tip} - To keep the tip of your soldering gun clean of scale, woodscrew-fasten a brass-bristle suede shoe brush to one end of your workbench. Wipe the soldering-gun tip across the brush occasionally to keep it clean for efficient soldering.-J.A.C.


\section*{Why Inside Gún-Tip Care?}
- To receive maximum soldering efficiency and long-tip life, be sure that cleaning and tinning operations of your soldering gun's tip also include the inside surfaces of the tip. A gun's tip that is maintained on the outside, but allowed to deteriorate on the inside, is sure to give lowered soldering efficiency and it will shorten tip life.

\title{
Versatile Code Practice Equipment
}

By HOWARD S. PYLE

THE teaching of code to a group of students is made easy with this control unit. The control unit (Fig. 1) with connections to a key and an ac supply line, is a keyed audio oscillator of variable tone and volume, with the resultant tone reproduced in a loud speaker with sufficient audibility to handle a group of up to thirty students.

The control unit is housed in a Hamcab \#12. Layout the front panel, chassis and the rear panel according to Fig. 2 and cut the holes for the components. Several holes in the sides of the cabinet are also required. Mount the components (see Materials List). Wire the unit according to the schematic, Fig. 3. The isolation transformer is mounted inside the cabinet.
When you have completed the control unit and have selected a space for the students' table (Fig. 4), make the table of plywood, suitably supported. Wire the table in accordance with schematic (Fig. 5) and Fig. 6.
Through the plug P-1, provided on the table cord, connect the table wiring to the instructor's control unit through the multi-terminal jack, J-2. With the instructor's switch S-2 in the LOCAL position, the audio oscillator is keyed and the reproduction emanates from the loud speaker. All of the table circuits are now connected to the control unit through the cord and plug. Any student whose toggle switch SX is placed in the A position, now has his key in parallel with the instructor's and he, too, may then key the oscillator.

One or all students may be so switched in through their SX switches and have keying control of the oscillator, with loud speaker reproduction. The instructor may then send to all students or work with any one or more students two-way, with the rest of the class monitoring.


This control panel is a versatile aid in group code instructions.

Any two or more students may work each other, simulating on-the-air operation and, as the reproduction is still from the loud speaker, the remainder of the class may still monitor all sending and, if desired, may break in on the communication as can the instructor.

Now let's throw the instructor's switch S-2, to the REMOTE position. This immediately disconnects the loud speaker from the circuit and at the same time shorts the instructor's key, thereby producing a continuous, steady audio tone which is fed through J-2 and P-1 to the tables and made available to all students through their keys and head telephone receivers, provided each student has thrown his toggle switch SX to the B position. The second switch \(S\) at each student position, if all thrown to the ON position, will parallel all positions, and the same conditions existing when the instructor's switch S-2 was in the LOCAL position will appear except that reproduction will now be in the head telephone receivers rather than through the loud speaker.

Suppose now that we leave the instructor's switch, S-2, in the Remote position and that


Parts layout and wiring of instructor's control panel

all student switches \(S\) are placed in the open position. Each student may then practice sending by himself with reproduction in only his own headphones and without interfering with any other student who may be engaged the same way. In other words, each and every student may conduct sending practice and listen to himself in his headphones while all other students are doing likewise simultaneously and with no inter-position interference.

Now, suppose student \#2 wants to work

\section*{S switch to ON.}

And the instructor may listen to any individual student, any pair or more who may be working together and may break in on any position or any group of paralleled positions by merely placing his monitor position selector switch S4 on the single position he wishes to monitor or work, or to any of the positions which are paralleled.

The speed timer is a standard electric clock movement and motor-in this case a new Telechron from one of the mail order
electronic supply houses (cost \$1.95) without hands or face. The octagon shaped dial shown in the photos is made by removing the clear plastic cover from a box of dressmaker's pins purchased at the local variety store. Give it a coat of black enamel and fit small white decals, procurable at any amateur radio supply store, to indicate the \(15,30,45\) and 60 second points. A light strip of aluminum is cut and fitted to the central shaft of the clock driving mechanism or a standard sweep hand may be procured from a local watchmaker. This makes one revolution every 60 seconds; five times around equals five minutes and enables the instructor to time code speed.

The audio oscillator is an Ameco or other brand purchased in kit form and the cabinet discarded after removing the speaker. Unfortunately these oscillators are of the ac-de type and require installation of a small \(1 / 1\) ratio isolation transformer on the inside of the control cabinet, feeding the oscillator, clock motor and an ac outlet from the secondary side and with the primary connected externally to the 115 ac line through the power switch and fuse on the control panel. The ac outlet AC-2, of conventional chassis mounting type, is installed on the side of the cabinet to provide a convenient point at which to plug in the ac supply to an automatic tape transmitter, if one is used. If you use a tape transmitter (such as Instructograph) the contacts of the tape transmitter are paralleled across the instructor's key through a two conductor cord and plug with a matching socket mounted on one side of the control cabinet.

For the indicator lamp (I) use an NE-51 neon bulb connected through a 47 K resistor


Complete equipment as set up in the author's home class-room. This arrangement uses a four position table hinged to wall and with folding plywood wing legs.


Wiring of the students' table.
in each leg, to pin 1 of the 50 C 5 tube and to pin 7 of the 35W4. The NE-51 element will not fire until the neon gas has become sufficiently heated, which will take a few seconds. Conversely, the bulb will also require a few seconds to extinguish after the ac switch is placed in the off position. This is an added safety factor in that the false indication that the unit is still hot allows any stray high voltage in the oscillator to bleed off before you touch exposed terminals.

If, due to use of high impedance headphones ( 2000 ohms) with the oscillator, there is an annuying undertone of audio feed-back when unkeyed, place a 670 -ohm (not critical value) \(1 / 2\) watt resistor across each headphone jack.

MATERIALS LIST-GROUP CODE EQUIPMENT INSTRUCTOR'S CONTROL UNIT

Design.
AC. 2 \(\stackrel{T}{\mathrm{~F}} \mathrm{~F}\)
S.1/S-3

AC. 1
SPK
OSC
S-2
J.3/J. 4
J. 2
J. 1
S. 4

1
R-R1 Description
110 V . AC chassis type receptable '(Amphenol 61.F) \(115 / 115 \mathrm{~V}\). isolation transformer (Triad N.51X)
panel mounted fuse hoider, insert type (Buss HKP) SPST bat-handled toggle sws. (Cutler-Hammer 8098) recessed 115 V. AC plug (Cinch-Jones 2RP)
\(4^{\prime \prime}\) PM dynamic speaker (incid. in Ameco oscil kit) code practice oscillator (Ameco CPS-KL Deluxe)
lockiny type lever switch (Switchcraft 60012-L) open circuit phone Jacks (Mallory LA. 1 Midget)
terminal jack (Amphenol Milltary type AN 12 for up to 8 students or Cinch.Jones Series 300)
single contact, male microphone receptacte. Insulate from cablnet with extruded fibre washers. (Walsco 1882 or equivatent)
rotary switch (Mallory 3215 J for 4 students, 32112 J for 8 students)
jewel light assembly with NE-51 neon bulb (Drake 10)
47 K -ohm rasistors, \(1 / 2\)-watt
cabinet with chassis-mount thassis upside down in cabinet to form rigid base plate. (Hamcab 12 , L. M. Bender Co., 2528 W. 9th St., L. A. 6, Calif. or supplier)
SPEEDTIMER Telechron electric clock motor with sweep hand
pluy to match J-2 MENT (FOR a STUDENTS)
pluty to match J-2 on Instrucior's control unit.
SPST tougle switches-1 for each student (Cutter. Hammer 8098)
Sx SPDT toggle switches-1 for each student (Cutler,

\section*{KEYS} Hammer 7140)
military surplus or builder's choice
R
CABLE
midoe ( open-circuit phone jacks (Mallory LA-1)
\(670-\mathrm{hmm}, 1 / 2\)-watt swamping resistoes, one for each student
12-conductor (for up to 8 students) Nexible cable to reach from table to \(\mathrm{s}-2\). Conductors may be unshielded. (Belderi 8747 intercoin cable)


Wiring for one four-position table; additional tables are wired identically.

- When the turning ratio of a large knob on a receiver is too slow, a rubber suction cup will solve the problem. Place the cup directly in the center of the knob and use it as an additional knob for fast tuning. A bottle-cap force-fitted into the cup (or over the cup) will make turning easier and improve ap-pearance,-J. A. C.

Stickers Solve Tape Troubles

- Need a good pair of recording tape spool locks for your tape recorder? A pair that isn't easily misplaced when not in use? Two medium-size rubber suction cups-the type with open tops-are ideal for this purpose. The cups are easy to slip over the spindles to hold the spools, or they may be used as wedges to hold tape on the spools. When they aren't in use, you can store them neatly on the tape deck by means of suction. They might be used this way as holders for your regular spool locks.-J. A. C.

\title{
ELECTRONIC NUMBERGRAM
}

By JOHN A. COMSTOCK

THIS puzzle is especially for those electronics hobbyists who are fascinofed by numbers and calculations. This should keep you busy the rest of the day!

When you have worked out the problems presented by the clues, and filled in the right numbers, turn to page 158 for the solution.

\section*{ACROSS}
1. Year Hertz proved radio possible.
4. Frequoncy in Citi. zens Band set aside tor radio-telephone.
6. Maximum afficiency commoniy obtained in actual practice when an amplifior is operated class \(B\).
8. Last TV channel in UHF group.
9. Wire left on 1000 -ft. spool after you have run a line 300 ft. long.
10. Frequency of a parallel tuned cir. cuit tuned to 3600 ke after inductance has been reduced by hall and capacilance doubled.
12. Lowest useful frequency in radio spectrum for aceurate and reliable communications (in kilocycles).
13. Second harmonic of a 400-meter wavelongth signal. expressed in kilo. cycles.
14. Voltage across a capacitor that has been connected to a source of 100 volts, then removed and connected in parallel with another capacitor of the same value.
16. Largest AWG wire gauge.
17. \(2.71 \times 10^{-6}\) henries expressed in microhenries.
19. Image frequency of a superhet when tuned to 1450 ke and \(1 F\) is 465 kc .
21. Total capacitance of three capacitore4. 6, and 12 microfarads - connected in parallel.
23. Third harmonic of 5 kc .
25. Vollage drop acrons series resonant circuit when capacitive reactance and inductive reactance are 175 ohms each. resistance is 65 ohms, and applied voltage is 248 volts.
26. Width of commer. cial FM broadeast channel in kilo. cycles.

27. Inductive reactance of a 2-henry choke at a frequency of 3000 cps.
29. Amount of resistance in ohms when a voltage of 100 volts will maintain a current of 10 amps.
30. . 000005 amp converted to milliample
34. The number of yeare required for radium to lose onehalf its energy.
35. Decimal multiplier used when you have the peak value of a sine wave. but want to find the average value.
36. Velocity in kilo. meters of a \(20-\mathrm{mc}\) aignal having a wavelength of 15 meters.

\section*{DOWN}
1. Received signal frequency of a superhet when IF is fixed at 176 kc and mixer oscillator is operating at 1586 kc.
2. Dah-dah-dah-dit-dit, dah-dah-dit-dit-dit. dah-dah-dah-dah. dah.
3. Second harmonic of 300 kc.
5. Xe of a .01-mfd capacitor at a frequency of 3000 cps.
6. . 080 millihenries expressed in micro. henries.
7. Outpui irequency of a 5 -me transmitter expressed in kilocycles.
10. Lower limit of medi-um-frequency band in kilocycles.
11. . 0006 microfarada converted to micromicrofarads.
14. Total resistance of 15 ohms, 30 ohms. and 5 ohms, connected in series.
15. Color burst troquency in megacycles.
17. Oscillator frequency in kilocycles of a transmilter having an output signal of 16880 kc and three doubler stages.
18. Number of equalising pulses trans. mitted per field in monochrome TV.
20. Wattage reference level in watts of 0 decibels.
21. Number of joules in 24 -watt seconds.
22. Radiated output in watts of a station when transmitter output is 1 kilowatt, line loss is 50 watts. and antenna power gain is 3.
24. Theoretical tield strength in me per mile at 200 miles when 100 mc per mile is measured at 100 miles.
25. Applied voltage when two resistors are connected in series, the value of one 50 ohms, the other with a volt age drop of 50 volts: current flow is 3 amps.
26. Value of negative bias on a tube when grid resiator is 2000 ohms, grid current 10 milli. amps.
27. Upper limit in meg. acycles of UKF band.
28. Wavelength in meters of a 4-mc transmitter signal.
29. Year radar was first used to make contact with moon.
31. Current flow in amperes when a resistor drops a voltage of 10 volts and the power dis. sipated is 270 watts.
32. Total number of electrical degrees that plate current flows in a clase "A" amplifior.
33. \(7 \times 10^{2}\) micromicrofarads in ordinary nolation.
34. Value of a resistor color-coded brown. blue. black.

\title{
Experimentally Determining the Velocity of Sound
}

\section*{This experiment may be performed with equipment available to physics students, or by the home experimenter with a preamp, AC voltmeter and audio signal generator}
by frank woods, Jr.

SOUND is propagated by longitudinal waves consisting of alternate compressions and rarefactions of air as shown in Fig. Ib. If a sine wave of voltage (solid line Fig. 1c) is applied to the terminals of a loudspeaker (an electrical to sound transducer), the air in front of the speaker will have the pressure distribution shown in 1 lb at a given instant of time. The pressure at a given point will of course vary with time, and a microphone or speaker placed at that point will react to these changes in pressure. This reaction to the pressure will produce a waveform of electrical voltage at the terminals of the microphone or second speaker that is a copy of the solid line of Fig. 1c, except that it will be smaller in magnitude and will be displaced in time, as shown by the dotted line in Fig. 1c.
If a source speaker and receiver speaker are a whole multiple of one wavelength apart, the receiver waveform will be in time with the source speaker signal. The measurement of this distance would be difficult to perform accurately. A wavelength - the distance


The normal positions of particles of air (a) are changed upon becoming the carrier of a sound wave-they are alternately compressed and rarified (b). If the sound source is a speaker producing a wave represented by the solid line in (c), a receiver speaker would receive a copy of this wove slightly later (dotted line).
Lissajous figures for two voltages of same frequency. The ongles given refer to the differences in phase between the vertical and horizontal input voltages where 1 cycle. time is considered equal to \(360^{\circ}\). Oscilloscope method for defermining the velocity of sound. Transformer cores ore connected to common connection to minimize hum pick-up.

through which a cycle of sound is distributed at a given instant of time-may be determined more accurately in another way. A cycle corresponds to a complete excursion from nominal to maximum to nominal to minimum to nominal air pressure. Suppose the position of the receiver speaker relative to the source speaker is adjusted for a given time relationship between source and receiver voltage. If the receiver speaker is moved away from the source speaker the time relationship will change, till at some new position the voltage waveforms of source and receiver voltage bear the original time relationship. The distance that the receiver must be moved to attain the original time relationship is a wavelength.

The relationship between the velocity of sound ( v ), the frequency ( f ), and the wavelength ( w ) is v equals fw . Thus, if wavelength and frequency are known, the velocity of sound in air may be computed. An audio signal generator may be used as a sinusoidal voltage source speaker driver. The frequency may be read from the signal generator dial. Wavelength may be determined by the method described in the previous paragraph.

All that remains is to find the time relationship between source and receiver signals.

There are two good methods of determining the time or phase relationships between two voltages of the same frequency. One of these methods requires an oscilloscope and employs Lissajous figures. The other employs an ac voltmeter in a comparison circuit. Since the receiver voltage is small, an audio millivoltmeter such as the Heathkit AV-3 or an amplifier driving an ac voltmeter should be employed if the latter method is used. (The "HiQual Preamp," ideal for this experiment, appeared in Radio-TV Experimenter \#569 available from Science and Mechanics, 505 Park Ave., New York 22, for \(\$ 1\) including postage and handling.

Oscilloscope Method. The experiment is diagrammed in Fig. 2 and shown visually in Fig. 4. The loudspeakers may be inexpensive ones such as the \(4-\mathrm{in}\). Lafayette SK-25. The transformer secondaries should match the speaker voice coils and the primaries may have any impedance value from 2 K to 25 K . A high impedance is preferable for the receiver circuit since the transformer is reverse connected and a voltage step-up results. The Stancor A3327 ( 25 K to 4 ohms) is an excellent choice. If an audio signal generator which does not have sufficient power output to drive the speaker audibly is used, connect an audio amplifier between the signal generator and the source drive transformer. Connect the receiver transformer input to the vertical input of the oscilloscope, and the source signal to the horizontal input.

Fasten the speakers in hand vises and support them at the same height. Set the signal


Oscilloscope set-up for determining velocity of sound.


In the meter method, V1 and V2 in phase result in minimum voltmeter reading ( 0 ), while V1 and V2 \(180^{\circ}\) out of phase (b) give maximum voltmeter reading.
generator for 500 cycles and adjust the output till an audible signal comes from the source speaker. Adjust the oscilloscope controls to display the Lissajous figure. Move one of the speakers relative to the other till the \(0^{\circ}\) waveform of Fig. 3 is observed. Measure and record the distance between the speakers, in ft . Now increase the distance till the \(360^{\circ}\) waveform of Fig. 3 appears. Measure this distance, and subtract from it the first distance, which gives the wavelength of the signal. The velocity of sound in ft . \(/ \mathrm{sec}\). may then be computed from \(v=f w\).

The velocity of sound is known to be 1,054 ft . \(/ \mathrm{sec}\). plus \(1.1 \times\) the temperature in degrees F . Thus, in a room at \(70^{\circ} \mathrm{F}\), the velocity of sound is \(1,131 \mathrm{ft} . / \mathrm{sec}\). The accuracy of the experimental results may then be computed;
\[
\% \text { error }=\frac{v-v^{\prime}}{v^{\prime}} \times 100 \%
\]
where \(v\) is the experimental value and \(v^{\prime}\) is the known value.

The author's experiment produced fairly accurate results. The wavelength at 1000 cycles was 1.167 ft . Thus \(v\) was \(1,167 \mathrm{ft} . / \mathrm{sec}\). The room temperature was \(80^{\circ} \mathrm{F}\). The value of \(v^{\prime}\) therefore was 1,142 ft ./sec. The error was \(+2.2 \%\). The experiment was repeated with the signal generator set at 500 cycles. The measured wavelength was 2.29 ft . The slide rule computed value of \(v\) was \(1145 \mathrm{ft} . / \mathrm{sec}\). The error was \(0.26 \%\). Note that the accuracy improved considerably when a longer wavelength was involved.
Meter Method. The difference of two sine waves of equal amplitude and frequency for \(0^{\circ}\) and \(180^{\circ}\) phase relationships is shown in Fig. 5, and this leads to a method of finding sound wavelength with more common equipment. Either an audio millivoltmeter or an ac voltmeter is needed, the latter requiring an amplifier such as the "Hi-Qual Preamp," referred to earlier, as a driver. The value of voltage which an ac meter will read does not give an indication of phase relationships. But, since the value which the meter will indicate is a function of peak value, the differencing principle may be employed to determine phase relationships. The schematic is shown in Fig. 6 and the set-up in Fig. 7.

The signal generator drives the source loudspeaker. A 1 K potentiometer ( R ), in the original apparatus a Clarostat \(58 \mathrm{Cl} 1-1000\), is connected across the signal generator output. Its purpose is to allow the adjustment of the voltage between the slider and the common connection to the receiver to be approximately equal to the voltage at the output of the preamp. This is accomplished by measuring the voltage across the preamp output with the voltmeter and then connecting the voltmeteracross the potentiometer to make the adjustment of \(R\). The two sets of connection terminals for this adjustment are designated M1 and M2 in Fig. 6. After this adjustment has been made the meter is connected in the circuit as shown.

With the meter connected as shown in Fig. 6 , receiver and source voltage buck each other (subtract). This process causes the meter to read minimum voltage when both voltages are in phase (5a) and maximum voltage when both voltages are \(180^{\circ}\) out of phase (5b). Thus, the receiver speaker is moved through


Schematic for determining velocity of sound with an ac valimeter. (If audio milivaltmeter used, preamp not needed.)


Sel-up for voltmeter method of finding speed of sound.
one wavelength when the meter indication goes from min to max to min or from max to \(\min\) to max. The distance measurements, frequency used and the computations are the same as those required with the oscilloscope method.

\section*{Shockproof Switch Covers}

- To avoid any possible shock from the bathandles of toggle switches, place plastic testclip insulators over them. These insulators are also good dust covers to prevent particles of metal and other foreign materials from entering the switch mechanism.
The covers enable one to throw the switch safely and easily, and to distinguish from tilt, whether the switch is on or off.-J. A. C.

\title{
Combined Voltage Calibrator And Electronic Switch
}

Sine and square wave seen simultaneously with aid of electranic swirch unit.

\section*{Single unit multiplies ostilloscope usage}

\author{
By W. F. GEPHART
}

THE unit shown in Fig. 2 combines two useful 'scope accessories: 1) an electronic switch which permits viewing of two signal patterns simultaneously (Fig. 1), and 2) a voltage calibrator, allowing the 'scope to be used for ac voltage measurements. The first accessory, the switch, permits both the input and output of an amplifier to be viewed together to check fidelity, for example. The second accessory, the voltage calibrator, gives the magnitude of a signal as the wave form is viewed.

Our unit has a special switching system that permits the calibrated voltage signal to be one of the signals seen simultaneously.

An electronic switch switches signals so fast that both images appear on the oscilloscope together, due to the persistence of the cathode ray tube. A multivibrator type oscillator switches amplifier tubes "on" and "off" so they conduct alternately. Separate signals are fed into each amplifier tube, whose output is common. This output is actually both signals, presented alternately.

Figure 3 shows the schematic, in which V1 is a twin triode multivibrator. It generates square waves, with frequencies between about 20 and 2000 cycles, as set by SW1 and R15, the frequency controls. The multivibrator drives the grids of a second twin triode (V2), which acts as a switching tube. The two plates of the multivibrator are connected to the two grids of the switching tube. Since the signals on the plates of V1 are \(180^{\circ}\) out of phase, the two halves of V2 conduct alternately. The output of the multivibrator is a square wave and quite high. Thus, when the
plate of V1a is positive, the grid of V2a is positive and V2a conducts. At the same time, the plate of V1b and grid of V2b are negative,


Front view of the completed unit.



Back-of-panel view shows miniature pots mounted by stiff wire leads.
which prevents V2b from conducting. At the half-cycle point, the situation instantly reverses (since the multivibrator is a square wave generator), and V2b conducts and V2a cuts off.

As the two halves of V2 alternately conduct, the current they draw flows through the cathode resistors (R28 and R29) of V3a and V3b. The twin triode amplifier (V3) is two ordinary amplifiers, biased at a normal op-


Under-chassis view shows shielded lead attached to common negative lead of binding posis.
erating point by cathode bias. If the cathodes of the switching tube were not connected to their cathodes, both halves of V3 would amplify equally. However, as the two halves of V2 draw current, this current flowing through the related cathode resistor of V3a or V3b biases that half of the amplifier tube (V3) to cut-off. In this way, the two halves of the amplifier tube (V3a and V3b) are alternately swstched on and off at a rate equal to the multivibrator frequency. Therefore, the two input signals take turns appearing at the out-

put terminals. But, due to the persistence of the fluorescence of the CR tube and the rapid switching rate, both signals appear on the CRT at the same time.

By adjusting the dc potential of the grid of the amplifier tubes, the position on the CRT screen of each signal can be changed. This is done by having a de voltage from twin voltage dividers R19-R21 and R20-R22 across potentiometer R26 (Position). Adjusting this control varies the voltage on each grid by changing the grounding point.

The voltage calibrator section uses a neon bulb to get square waves at line voltage frequency. Neon bulbs ignite at a certain voltage, and if a resistor is connected in series with the bulb, the voltage drop across the bulb will be constant. The ignition voltage of the NE32 bulb used is approximately 60 v ., and gives square waves of 60 v . in this circuit. On the positive half of the cycle, the voltage increases until the ignition point (about 60 v .) is reached. The tube then fires, and starts drawing current. As the voltage increases, more current is drawn, but the voltage drop across the resistor in series with the tube (R38) holds the voltage across the tube constant. As the voltage passes the peak and decreases below the ignition point, the bulb goes out, and current stops flowing through the resistor. The voltage drop across the tube then follows the pattern of the cycle, and the process is repeated on the negative half of the cycle. In this way, fairly good square waves are obtained.

The ignition voltage is reduced to a reference level by R37, and subsequently divided


FLANGE)
for other ranges by R31 through R35. For oscilloscope use, these levels are usually set at peak-to-peak values rather than the RMS values shown on meters.

Switch S3 and potentiometers R25 and R27 permit the output of the calibrator to be used as one of the electronic switch inputs. The usual method of using a calibrator is to note the height of the calibrator pattern, remove it and connect the signal to the 'scope, and compare the heights of the patterns. By switching the calibrator output into the electronic switch, the calibrator voltage pattern remains on the screen to be compared directly with the signal pattern.

Potentiometers R25 and R27 are required to keep conditions constant when using the calibrator through the electronic switch. If the calibrator were fed directly into Input-B terminals, the output of V3b would vary with the setting of B -gain and the amplification of V3b. Potentiometer R27 is set so the output of V3b is equal to the input.

Since the magnitude of the signal to be measured must not be altered in this case, potentiometer R25 is set so that the output of V3a is equal to the input, making it a \(1: 1\) amplifier. This prevents the electronic switch from affecting the magnitude of the signal whose voltage is to be measured by comparing it with the calibrator signal.

The unit is built on a vertical arrangement to minimize bench space required, as shown in Figs. 4 and 5. The panel and chassis layouts are shown in Figs. 6 and 7, with pictorial wiring shown in Figs. 8 and 9. Notice that R25 and R27 are miniature units, supported


PANEL WIRING
by stiff (\#16) wire leads.
The power supply and filaments are wired first, followed by the neon bulb circuit. In mounting resistors on the voltage switch (S2), be sure they will clear the neon bulb. No particular care is required in wiring, except that certain leads (as shown on the schematic) should be shielded, and care used that the grounded shield does not short out any terminals.

After wiring, output of the calibrator must be set. Connect a vacuum tube voltmeter be-

tween R37 and ground, and set the voltage switch S2 on 50 . Calibration should be for peak-to-peak voltages, so the reading on the VTVM should be .3535 of the values shown on S2. Turn the unit on, and adjust R37 so the voltmeter reads 17.7 v ., which is .3535 of the 50 v . indicated on S 2 . Due to the divider, other readings will be appropriate.

Next, potentiometer R27 should be set. With Calibrator Output S3 on External, set Voltage S2 on 5, and connect the Voltage terminals to the vertical input of the 'scope.

MATERIALS LIST-'SCOPE CALIBRATOR AND SWITCH
(All resistors \(1 / 2\) watt and \(10 \%\) unless shown)
\begin{tabular}{|c|c|c|c|}
\hline Desig. & Description & Desig. & Description \\
\hline R1, R2 & 51 K, 5\% & C1. C 2 & . 001 mfd , 200 r . \\
\hline R3, R4 & 12K & C3. 44 & . 047 mfd .200 v . \\
\hline R5, R6 & , 22 meg. & C5. C6 & \(25 \mathrm{mfd} ., 25 \mathrm{r}\). electrolytic \\
\hline R7, R8 & 1 meg . & C7. C8, C9 & \[
.5 \mathrm{mfd} ., 200 \mathrm{v}
\] \\
\hline R9, R10 & 3.3 meg.
4.3 meg. \(5 \%\) & C10 & 40.40 mfd., 150 v . electrolytic (Mallory FP. 221 or \\
\hline R13, R14 & 5.1 meg., 5\% & S1 & 2-pole, 5-pos, rotary switch (Coarse Freq.) Mallary \\
\hline R15 & . 1 meg. potentiometer (Fine Frequency) & S1 & 3226 J ( \({ }^{\text {a }}\) \\
\hline \(R 16\) & .15 meg. & \$2 & 1-pole, 5-pos, rotary switch (Voltage) Mallory 3215J \\
\hline R17, R18 & .13 meg . & \$3 & 4-pole, 2-pos. rotary switch (Calibrator Output) \\
\hline R19, R20
R21, R22 & . 33 meg . & & Mailory 3242J \\
\hline R23, R24 & . 1 meg. potentiometer (Input A and Input B) & PL & OPST toggle switch (Power)
6.3 v., 15 amp pilot light (\#40 or \#47) \\
\hline R25. R27 & 1 meg . miniature potentiometer (Clarostat Series 48) & SR & 65 ma . selenium rectifier (\#40 or \#47) \\
\hline R26 \({ }_{\text {R28 }}\) & 50 K potentiometer (Position) & T & power transformer, 120 v. @ 50 ma., 6.3 v. © 1 amp. \\
\hline R28, R29 & 1000 ohm & & (Merit P.3045) \\
\hline R30 & 33K, 1 watt & NE & NE 32 neon bulb \\
\hline R31 & \(68 \mathrm{~K}, 1 \%\) & V1, V2, V3 & 6CG7 vacuum tubes \\
\hline R32 & 12K, 1\% & & \(5 \times 6 \times 9^{\prime \prime}\) utility cabinet (Bud CU.1099) \\
\hline R33 & 10K. \(1 \%\) & & three 9-pin miniature sockets \\
\hline R34, R35 & 4K, 1\% & & neon bulb socket \\
\hline R36, R39 & 1K, 1\% & & pilot light holder \\
\hline R37 & 50 K potentiometer & & 8 binding posts \\
\hline R38 & 10 K & & 7 knobs \\
\hline R40 & 250 ohm. 10 watt, wirewound & & miscellaneous hardware \\
\hline
\end{tabular}

Turn both units on, and adjust the vertical gain control on the 'scope to give a pattern of convenient height, and note the height of the image on the CRT. Do not touch the vertical gain control on the 'scope after this.

Move the leads from the 'scope to the Output terminals, set Frequency controls S1 and R15 to mid-position, and adjust Position R26 so a single trace appears on the CRT. Switch Calibrator Output to Input-B and adjust R27 so that the trace height on the CRT is the same as the voltage trace height found above. Seal R27 shaft with nail polish.

To set R25, feed a low gain signal from an AF oscillator or other unit into the vertical input of the 'scope, adjust the vertical gain for a convenient height, and note the trace height. Then connect the 'scope to the Output Terminals instead of the signal source and adjust the Position control to get a single trace on the CRT.

Remove the neon bulb and set S3 to InputB. Connect the AF oscillator to Input-A terminals, and adjust R25 to give the same trace height as given when the signal was connected directly to the 'scope. Seal R25 shaft with nail polish and replace the neon bulb.

It will be found that adjustment of the position control will affect signal magnitudes somewhat, so the voltage calibrator section

\section*{Improved Razor-Blade Detector}
- Here is a more rugged version of the familiar foxhole razor-blade "crystal" detector. The original was a piece of pencillead bridged across the edges of two razor-blades and sometimes used by G.I's in fox-
 holes to pick up local broadcasting stations. This was fairly sensitive, but it was very difficult to hold an adjustment, as the least vibration or jar caused the lead to rock and roll on the blade edges, resulting in erratic and noisy reception. For the arrangement shown, blue steel single edge or double edge blades (such as Pal razors) seem to be the most sensitive, but many other blades also have sensitive spots on them. Use with a conventional circuit and a good antenna and ground.-Arthur Trauffer.

\section*{Removing Enamel Wire Insulation}
- To remove enamel insulation on magnet and hook-up wire quickly and cleanly, wrap a piece of sandpaper around the wire and give a twisting, rotary motion.-E. L. Burner.
should be used through the electronic switch section only when approximate results are sufficient. When using the unit in this manner, the Position control should be set so the signal pattern is superimposed over the voltage calibrator pattern, and ready comparison can be made. Also, most accurate results can be obtained when the two signals are superimposed. For more precise work, the electronic switch section is not used. Output from the Voltage terminals is connected to the 'scope, the vertical gain set, and trace height noted. The leads from the Voltage terminals are removed, and the signal is then connected directly to the 'scope. A comparison of the trace height produced by the signal, with the noted height of the voltage calibrator trace will then give a precise peak-to-peak voltage measurement.

In using the electronic switch, the two signals to be viewed are connected to Input A and Input B, and the Output is connected to the vertical input of the 'scope. The frequency controls of both the 'scope and the electronic switch are adjusted for proper frequency, and the gain controls on the switch adjust the individual trace heights. By use of the Position control on the switch, the two patterns can be shown separately or superimposed (as in Fig. 1).

\section*{Pointed-End for Radio Ground Pipe}
- A simple pointed end makes it easier to drive a radio ground pipe. Insert the lathe-turned point into the bottom end of the pipe to keep dirt from plugging the pipe. Holes drilled through the pipe for soil wetting reduce electrical resistance between ground pipe and soil.-Arthur Trauffer.

Solderless Tube Sockets

- When soldering on top side of radio or TV chassis, dropping solder in an open tube socket can cause trouble. Eliminate this possibility by placing a strip of wide adhesive tape over the open socket.-H. Leeper.


By FORREST H. FRANTZ, SR.

THE type of meter we are concerned with has an electromagnetic mechanism known as a d'Arsonval movement. From it I'll show you how to make voltmeters and ammeters and ohmmeters.

How Meters Work. The d'Arsonval meter (Fig. 1) contains a permanent magnet, a coil that is free to rotate about its pivot axis, a needle attached to the coil and a spring that resists displacement of the coil from zero and tends to restore the coil to zero.

The torque that causes the coil to turn is developed when a current passes through the meter coil. The amount is proporticnal to the current passing through the meter coil. The coil and needle are supported by low friction bearings so that mechanical resistance is low. The pole pieces conduct the flux from the magnet poles and the circular iron core over which the coil rotates. This core and the curved pole piece faces assure that the magnet's flux is always cutting the coil windings at right angles.

The most common basic d'Arsonval meter movement is the 0 -to- 1 milliampere dc meter.

Designing Your Own Meter Instruments. Assume for simplicity in the examples, that all of the work is being done with a 0-1 ma. meter. The resistance of the meter, if not
known, can be determined by the circuit of Fig. 2. Adjust pot R, which is connected as a high resistance rheostat, for full scale meter deflection. Connect shunt RS across the meter terminals, and adjust it until the meter deflection is reduced to half scale. The resistance to which RS is adjusted is the resistance of the meter movement. The resistance of RS may be measured with an ohmmeter or Wheatstone bridge.

Once you know the basic movement ( \(I_{m}\) ) and the resistance ( \(R_{m 1}\) ) of the meter, you can increase the current range with a shunt resistance ( \(R_{s}\) in Fig. 3.). The value of the shunt resistance for a new range is determined using these formulas:
(a) \(\mathrm{I}_{\mathrm{i}}=\mathrm{I}-\mathrm{I}_{\mathrm{m}}\)
(b) \(\mathrm{R}_{\mathrm{a}}=\mathrm{R}_{\mathrm{m}}\left(\frac{\mathrm{I}_{\mathrm{m}}}{\mathrm{I}_{\mathrm{m}}}\right)\)

You can buy a \(1 \%\) shunt resistor, or you can make the shunt by winding insulated resistance or magnet wire on a form, such as a matchstick or a Bakelite bobbin. Or you can use a rheostat, adjust it to the proper resistance, and lock it with a cement seal between the shaft and bushing. Most shunt resistance values will be so low, though, that it's best to wind your own.
In designing an extended-range meter

Circuit for measuring meter resistance. With RS out of the circuit adjust \(\mathbf{R}\) for full-scale meter de-
ection. Then connect RS across the meter as shown and adjust it till the meter reads half scale. The meter resistance is equal to the value to which \(\mathbf{R}\) is adjusted.

3
Extending the range of a current meter with a shunt resistance.

4
Converting a milliammeter to a voltmeter with a series resistance.

using a basic meter movement, try to select a range that is a convenient multiple of the meter scale range. Multiples of 10 are best since you can read the meter directly, and have to supply only the decimal point. Two and five are the next best choices for scale number multipliers, and of course, multiples of 10 can be used with these also. (Same applies to voltmeters.)

The circuit for converting a milliammeter to a voltmeter is given in Figure 4. These formulas are used:
(a) \(\mathrm{R}^{\prime}=\left(\frac{\mathrm{V}}{\mathrm{I}_{\mathrm{m}}}\right)\)
(b) \(R=R^{\prime \prime}-R_{m}\)

By connecting a switch (Fig. 5) you can make a multi-range voltmeter.

These current range extensions and voltmeter conversions are solved by applying Ohm's law. In the ammeter application of Fig. 3 , the meter and shunt are in parallel. Thus, the voltage across the meter equals the voltage across the shunt. Therefore, the current through the meter times the meter resistance equals current through the shunt times the shunt resistance. And the current into the combination equals shunt plus meter current. The voltmeter arrangement o: the second problem (Fig. 4) was based on the idea that the current through the shunt must equal the current through the meter, and the sum of the voltage drops across the meter and the series resistor equals the voltage drop across the combination.

What about measuring resistance with a meter? There are several approaches. The first (Fig. 6) utilizes an ammeter and a voltmeter to measure the current through, and the voltage across, an unknown resistance \(R_{x}\). Then \(R_{z}\) is calculated from Ohm's law. For

example, if V is 4.5 v and I is .005 amp (5 ma.), using:
\(R_{x}=\frac{V}{I}\). Then \(R_{x}=\frac{4.5}{.0} 05\), and \(R_{x}=900\) ohms. This method is cumbersome, so let's see if we can get around it. If we know the voltage E of the battery, do we need to measure V ? No, if \(R_{x}\) is much greater than the resistance of the meter measuring the current I. This leads us to the circuit of Fig. 7, where a pot \(P\) is employed to adjust the voltage V to a value around which we'll design our ohmmeter. Assuming that we'll use a \(1-\mathrm{ma}, 27-\) ohm meter movement, as before, we'll want the resistance of P to be about 500 ohms. This choice is made on the assumption that the current from the battery should be 10 or more times the current through the meter, for accurate results. The resistance across \(A\) and \(B\) is zero, if we short these terminals. Therefore the resistance of \(R\) and the meter should be 5 v (the design voltage) divided by the meter current, .001 amp . Resistance R , therefore, is 5000 ohms, minus the meter resistance of 27 ohms , or 4973 ohms . Since 5000 and 4973 ohms differ by only about \(1 / 2 \%\), you can let \(R\) equal 5000 ohms without noticeable error. The ohms scale may be calculated in terms of the I scale on the meter by assuming different values of \(R_{x}\) using this formula:
\begin{tabular}{cc}
\(I=\frac{V}{R+R_{x}}\) & \\
Thus, \(R_{x}\) in ohms & \(I\) in ma. \\
0 & 1.000 \\
500 & 0.909 \\
1000 & 0.832 \\
2000 & 0.715 \\
3000 & 0.625 \\
4000 & 0.555 \\
5000 & 0.500
\end{tabular}

\begin{tabular}{rr}
8000 & 0.384 \\
10,000 & 0.333 \\
15,000 & 0.250 \\
20,000 & 0.200 \\
30,000 & 0.143 \\
50,000 & 0.091 \\
100,000 & 0.048 \\
200,000 & 0.024
\end{tabular}

> A simple 3-ronge volimeter. Resistance values were obtained by the method of Fig. 4 and rounded off to proctical values.

Determining resistance by the volt-current (Ohm's law) method.

A simple ohmmeter circuit. In the example in the text, P is 500 ohms. For less critical zero adjustment, substitute (for P) a 100 -ohm pot in series with a 400 -ohm resistor.

IN34A and the Raytheon IN66 are suitable.
The shunt resistances for current meters and the series resistances for voltmeters of the ac variety may be determined in the same way as they were determined for dc instruments, but bear in mind that the transfer factor of the rectifier arrangement alters the value of the ac voltage required for full scale deflection, and that the apparent meter resistance is changed, too. Use the circuit of Fig. 2 for experimentation, considering the rectifier input terminals as the meter terminals and an ac voltage source instead of a battery to determine the apparent meter resistance. The current through the meter is the voltage across \(R\) divided by the resistance of R. Then, the formulas of Fig. 3 and 4 can be applied.
Multimeters. There are many meter kits available at low prices. They're called VOM (volt-ohm-milliammeter) or multimeter kits and are good for measuring ac and dc current and voltage, and for measuring resistance. Although many factors enter into the choice of a meter kit, the primary consideration is meter sensitivity: the number of ohms resistance that the meter movement and the series resistance present between the input terminals of the meter, divided by the corresponding voltage range. This is expressed in ohms/volt. This number is a function of meter movement current for full scale deflection. A 1-ma meter has a sensitivity of 1000 -ohms/volt; a 200 microamp. meter has a sensitivity of 5000 ohms/volt; and a 50 microamp. meter has a sensitivity of \(20,000-\) ohms/volt.

The sensitiviy is important, because when you connect a voltmeter into a circuit to make a measurement, you're connecting a resistance across the circuit. If you connect too low a resistance across the circuit, you'll draw enough current from the circuit to get a wrong voltage reading. Figure 9 illustrates what can happen. When you connect the meter across AB , its resistance is in parallel
 -a big error. However, if a \(20,000 \mathrm{ohm} / \mathrm{volt}\) meter were used to make the measurement, the resistance paralleling R2 would be 100,000 ohms on the \(5-\mathrm{v}\) range, and the resistance between AB would be 4760 ohms. The total current through the circuit would be 1.023 ma, and the voltage between \(A\) and \(B\) would be 4.87 volts, very close to exact.

Using a Multimeter. My young son uses his meter to check the resistance of a toy motor. If it's open, the needle reads infinite resistance (no deflection). Sometimes he checks his toy motors by using them as generators, switching the meter to a low de voltage or current range and looking for a meter deflection as he rotates the motor shaft.

The motor used as a generator with a meter indicating output voltage across or current through a resistance makes a good \(r p m\) indicator for lathes, drills, motors and engines (including cars). The same scheme may be used for a speedometer for bicycles or a child's wagon. Equipped with a propeller or vane that is outfitted to face into the wind or equipped with anemometer type cups, this same electrical arrangement may be used to measure wind speed. The hook-up of Fig. 10 may be used for any of these applications. The size of the series rheostat must be determined experimentally and may include a series resistance in the meter if you use the dc voltage range of a VOM for the meter. A more versatile approach is to use a dc current range.

Usually the pot adjustment can be made to calibrate the meter so the existing meter scale with a suitable fraction or multiple of 10 will provide the desired range of rpm or mph . Sometimes, though, you'll have to provide a paper and ink scale, and you'll have to figure out the mechanical coupling.

A multitester's ac volts range can be used

Meter rectifier circuits.
with an audio amplifier to produce an audio millivoltmeter, a sound survey meter or an applause meter (Fig. 11A). Figure 11B shows resistance-capacitance meter coupling, and 11C shows transformer coupling to the meter. You can rig up a calibration template for the amplifier volume control so you can use it as you'd use a range switch. You can use the meter's decibel or voltage scales.

The ac voltmeter ranges may be used to measure capacitance of paper, oil or mica dielectric capacitors. Use the circuit arrangement of Fig. 12. Adjust the pot till the voltages at \(A\) and \(B\) are equal. Then disconnect the pot and measure its resistance R. For the capacitance in microfarads, substitute the value of \(R\) in this formula:
\[
\mathrm{C}=\frac{1,000,000}{377 \mathrm{R}}
\]

This circuit works best with higher ac volt \(د\) ages, but 30 v is the top, safe limit. (The voltages across \(C\) and \(R\) won't add up to the applied voltage.) Get the 60 -cycle ac voltage from a transformer-either a filament transformer or a train transformer will do. And, don't use this arrangement to measure low-voltage electrolytic capacitors, or you may ruin them! You can use a \(6.3-\mathrm{v}\) transformer in the circuit to test electrolytic capacitors rated 100 v or more, without damage.

Beginners can use a meter to get a good understanding of electricity. Use it to find out: What happens when you connect batteries in series and parallel; what happens to the battery voltage when you decrease the resistance connected to it; what happens to the voltage and current when resistors are connected in series or parallel; how to apply


Ohm's law; the difference in the resistance of a light bulb before it's turned on and after it has been on a while. Incidentally, never use the ohms scales to measure resistance in a circuit under power. Always disconnect the voltage from the circuit before you measure resistance.

The resistance ranges may be used to check light bulbs and lamp wiring. If the ohmmeter needle deflects at all on the low ohm range, the bulb (or lamp wiring with a good bulb in the lamp and the switch on) isn't open and if the meter needle doesn't hit zero, the bulb or lamp isn't shorted. In the case of a table or floor lamp, if you get this kind of indication, everything's good, except that you're not sure that the switch will work. When you turn the switch off, the meter needle will return to its normal rest position if the switch is operating properly. This is the technique for trouble-shooting radios, electrical appliances and home and car electrical wiring.

Another example of the continuity check just outlined is locating tubes with open heaters in a radio or TV. If none of the tubes in an ac-dc (transformerless) radio light up when the radio is on, the probable cause of trouble is an open tube heater. An open tube heater will also cause a TV set to be inoperative, but won't necessarily prevent all tubes from lighting up. To check tube filaments for
|| Using an amplifier with on ac voltmoter as an audio millivoltmeter, sound survey meter or an applauso meter (a); R-C coupling metor to amplifier (b); and metor-connected amplifier output transformer (c). Illustrating how a low sensitivity voltmeter upsets low eurrent circuit operation and gives false readings (see text). A foy motor used as a generator in this simple circuit has mony practical uses. Determine \(R\) experimentally.
opens, use the ohmmeter test leads across the heater pins (power disconnected). The pin numbers may be obtained from tube manuals.

An ac voltmeter is useful in checking ac line voltages, transformers, circuit wiring, oscillator output, model railroad and toy circuits and for numerous other applications. The dc voltmeter is useful in checking batteries (check them for voltage with the normal load connected), checking dc power supplies, trouble-shooting in radios and car wiring, and for numerous other applications. You should have little difficulty in voltage measurement.

Current measurements are not used as commonly in routine trouble-shooting and experimenting, but are becoming more important with the advent of the transistor. The important thing to remember in making dc current measurements is that the meter is connected in series with source and load. That is, one of the leads connects to the source of voltage and the corresponding connecting point on the device that is receiving power. You might look at it as simply cutting one of the leads in the circuit and connecting the current meter to the lead ends that you've created. The microampere range on the meter is also useful as a current detector in Wheatstone bridge circuits.


\title{
Using Positive Feedback
}

\author{
By C. F. ROCKEY
}


DIAGRAM OF AMPLLFER EMPROYING FEDDACK

ONE of the truly valuable techniques available to the small-receiver designer is positive feedback, or regeneration. Most small receiver projects utilize it; in fact, all truly sensitive receivers using less than five tubes or transistors probably apply this principle.
Positive feedback owes its effectiveness to the reduction of circuit losses which it accomplishes. All apparatus contributes some loss of energy to a radio signal as it passes through; even one inch of hookup wire has measurable resistance. This unavoidable extraction of signal energy reduces both the available amplification and the selectivity of a receiver. Positive feedback takes a little of the relatively strong signal appearing in the output of an amplifier and transfers it around to the input, overcoming some of the losses in the circuit (Fig. 1).

Thus the losses of the circuit are reduced, and in effect the resistance of the tuning circuit or other circuit is reduced. In the case of the tuning circuit, since selectivity is an inverse function of its resistance, the tuning curve will be sharpened considerably (Fig. 2).

By "positive" feedback is meant that the feedback path and coupling network are arranged to make the feed-back voltage add to the original signal voltage at any instant. Such a connection enhances the gain and reduces the bandwidth of the circuit involved.
The additional gain is expressed in this formula:

\(\begin{aligned} & \text { Gain with } \\ & \text { Positive Feedback }\end{aligned}=\frac{\text { Normal gain }}{1-\text { Normal gain }} \times\) Feedback Ratio
The feedback ratio is the ratio of the voltage fed back over the output voltage. It is always a number smaller than one.

Even though you've let your algebra slip, you can still see that as the feedback ratio (amount of voltage fed-back, in effect) is increased the denominator of the fraction grows smaller. And as the denominator grows smaller, you will recall, the whole quantity becomes larger, since the numerator remains constant. This means that a comparatively small amount of feedback will give a large increase in gain.
Suppose we have an amplifier with a normal, non-feedback gain of five. Now, let us arrange that \(1 / 10\) of the amplifier's output voltage will be additively (positively) fedback into the input. Substituting these values into our equation we see that:
\[
\underset{\text { Gain with }}{\text { Feedback }}=\frac{5}{1-(5 \times 1 / 10)}=\frac{5}{5 / 10}=10
\]

Thus we see that even this comparatively small amount of feedback has doubled the actual amplification of our system. Some calculated gain values obtained from this same hypothetical amplifier with various values of feedback are tabulated below:
\begin{tabular}{cc} 
Ratio \(\left(\frac{\text { Feedback Voltage }}{\text { Output Voltage }}\right)\) & \begin{tabular}{c} 
Effective \\
Circuit \\
Amplification
\end{tabular} \\
Without Feedback & 5.0 \\
0.05 & 6.7 \\
0.10 & 10.0 \\
0.125 & 13.7 \\
0.150 & 20.0 \\
0.175 & 40.0 \\
0.195 & 200.0
\end{tabular}

The value of feedback is limited by the fact that when the product of the normal gain times the feedback ratio becomes equal to one, the system breaks into oscillation. As the feedback is increased toward the maximum value, the circuit adjustment becomes exceedingly critical. But positive feedback makes it possible to obtain as much amplification from one tube or transistor as would be gotten from two or three without it, so it is well worth the drawbacks.
Positive feedback is always employed in the

higher frequency circuitry of a receiver, since the bandwidth-limiting action makes its use in the audio section inadvisable. While most often employed in the detector circuit, regeneration often also improves the operation of if or rf amplifiers; here it increases both sensitivity and sharpness of tuning to a marked degree.

In any case, the requirements for successful application of positive feedback may be summarized as follows:
1. The feedback must add to the signal input voltage at all times. This means the phasing or polarity of the coupling circuit must be correct.
2. The magnitude of the feedback's effect must be under perfect control and smooth at all times.
3. Normal control of feedback must have a minimum effect upon the frequency to which the circuit is tuned.
Most often, an inductive feedback system is used wherein the energy is transferred via a magnetic field.

The first method of inductive feedback employs a tickler coil, connected in series with the output circuit and coupled magnetically to the tuned input coil. If the two coils, tickler and input coil are wound in the same direction and on the same form, they must be connected according to Fig. 3 and Table A.

The tickler coil should be spaced as closely to the input coil as possible, and should contain the fewest possible turns, determined by experiment.

Another commonly-used arrangement for providing positive feedback is by the use of a tapped input coil. This is shown in Fig. 4, connections in Table B.

Again, exact placement of the tap along the coil must be determined experimentally in new designs; in most cases, however, the
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
TABLE \\
Type of Circuit
\end{tabular}} & \multicolumn{4}{|l|}{A-TICKLER COIL CONNECTIONS} \\
\hline & \multicolumn{4}{|c|}{Connection Numbers} \\
\hline & 1 & 2 & 3 & 4 \\
\hline \begin{tabular}{l}
Vacuum Tube \\
Grounded Cathode
\end{tabular} & Plate & B+ & Ground & Grid \\
\hline \begin{tabular}{l}
Vacuum Tube \\
"Hot" Cathode
\end{tabular} & Ground & Cathode & Ground & Grid \\
\hline Grounded Emitter Transistor & Emitter & Battery & Ground & Base \\
\hline Grounded Base Transistor & Battery & Collector & Ground & Emitter \\
\hline
\end{tabular}

TABLE B-TAPPED INPUT COIL CONNECTIONS
\begin{tabular}{l|l|l|l}
\multicolumn{1}{c|}{\begin{tabular}{l} 
Type of \\
Circuit
\end{tabular}} & \multicolumn{2}{c}{ Connection Numbers } \\
\hline \begin{tabular}{l} 
Vacuum Tube \\
Grounded Cathode
\end{tabular} & Plate & Cathode & Grid \\
\hline \begin{tabular}{l} 
Vacuum Tube \\
"Hot" Cathode
\end{tabular} & Grid & Cathode & Ground \\
\hline \begin{tabular}{l} 
Grounded Emitter \\
Transistor
\end{tabular} & Collector & Emitter & Base \\
\hline \begin{tabular}{ll} 
Grounded Base \\
Transistor
\end{tabular} & Collector & Emitter & Base \\
\hline
\end{tabular}
number of turns between connections one and two will be appreciably greater than between two and three.

Although physical arrangements may vary, other taps may be used in certain applications, particularly with transistors, but the identical principles apply in coil connections.

Control of the effects of feedback is most often accomplished by controlling the gain of the circuit rather than by varying the feedback coupling. This is because most feedback variations tend to influence the tuning of the circuit at the same time.
The most widely-used method for controling the effect of feedback involves varying of either the dc plate voltage (with triodes) or the screen-grid voltage (with pentode tubes). With transistors, current practice involves variation of the dc base bias in most instances. This is practically done with a well-bypassed volume control potentiometer. When set up properly, these means provide absolutely smooth and reproducible control of the effects of feedback with a minimum of influence upon circuit tuning. This, along with a little circuit savvy and shielding, suffices for requirement three that we stated earlier.
From the operational standpoint, these two rules should be observed:
1. For maximum gain, adjust the effective feedback as closely to the oscillation point as possible. The oscillation-point is manifested by a click or plunk, followed by evidences of instability or reduction or gain as the feedback is advanced.
2. If for any reason it is desirable to operate the circuit in an oscillating condition; as for CW radiotelegraph reception with the simple receiver, for instance, again always operate as close to the oscillation-point as expedient.


\section*{STERRO MUSIC CENTER}

Complement your electronic finery by matching its
beautiful sound with a handsome hardwood cabinet
far below cost of its manufactured counterparts

\author{
By CHILTON E. PARKER
}

TRUE stereo-two high fidelity units operating together-is a wonderful experience, especially when you have purchased quality equipment in kit form at substantial savings and successfully wired the project. But you're really only halfway along the road to complete enjoyment of your achievement until you house all of the components in a lastingly-beautiful hardwood cabinet.

A cabinetmaker will custom-build such an elaborate enclosure for you at a price to match its handsomeness. For somewhat less, you may be able to "pick up" a fine cabinet of adequate dimensions at a large furniture store or radio shop. And, you can realize still more savings by building the \(71 / 4\)-ft.-long cabinet shown in Figs. 1 and 12, if your home shop is equipped with good hand tools and a few power tools. Its clean, simple styling will allow placement with practically any type of home furnishings, save the most extreme contemporary pieces.

Though solid and veneer cherry was selected as the primary wood, you can easily substitute any other hardwood that suits your taste or is more available in your area. Inner
frames and base pieces are of pine. All details have been worked out so that only a minimum of shop equipment is required. Power tools used include a table saw, \(1 / 2\)-in. drill press, a borrowed or rented router, and portable drill. Special tools used were a Stanley doweling jig and a set of Sears screw pilot drills.

Before ordering materials give special consideration to your speaker enclosures, as size will govern the dimensions of the cabinet. The speaker units in Fig. 2 have an overall height of 30 in . and can accommodate enclosures with a maximum height of 24 in . plus padding. A great many kits on the market will fit these dimensions comfortably.
The Cabinef Base, constructed in two distinct operations, consists of a sub-assembly and final surface assembly. Lay out pieces of pine for the sub-base as in Fig. 3A. For the long end pieces, rip a \(10-\mathrm{ft}\). 1 x 8 into two boards, \(31 / 2\) and \(33 / 8 \mathrm{in}\). wide. Put the boards together to be sure they will be cut square and, trim them to \(86^{3} / 4\) in. long. From the remaining parts of this \(3 / 4-\mathrm{in}\). stock, cut out four \(31 / 2 \times 15-\mathrm{in}\). pieces; also cut three \(2 \times 4\)


Minimum occeptable distance for placement of speakers is 6 ff ., which provides a stereo zone 11 fo 17 ft . from front of cabinet. Low- and mid-range speakers are spaced on 6-f. centers. Tweepers are placed further out to extend the stereo listening area.
pieces to the same length. A simple way to ensure squareness is to cut the pieces slightly oversize and clamp together, trimming all seven ends at the same time.

Drill for two \#8 x \(11 / 2-\mathrm{in}\). flathead ( fh ) screws on the ends of the long pieces as in Fig. 3A. A wood screw pilot bit will do a faster, more efficient job than ordinary drill bits. Glue and screw the \(3 / 4-\mathrm{in}\). side pieces to the ends, then line up the three \(2 \times 4\) pieces and repeat the operation. Before the glue dries, make sure all corners are perfectly square. After glue has set, assemble the two remaining inner pieces.
The Inner Frames are next (Fig. 4A). Cut two \(48-\mathrm{in}\). pieces each out of two 8 -ft. \(1 \times 8\) pine boards, then rip these 3 in . wide. Now cut out an \(18-\mathrm{in}\). and a \(28-\mathrm{in}\). length out of each of the four \(3 \times 48-\mathrm{in}\). lengths. Measure \(53 / 32\) in. from the center of each of the shorter pieces and, with the saw blade set at half the thickness of the wood, rabbet the ends for
a half-lap miter joint. Measure \(97 / 8\) in. from center of the longer pieces and rabbet these ends. If no other means, line up the edges on the edge of your saw table to check that corners are square.
Now you can glue and clamp the frames together then drill for and install two \#8 x \(3 / 4\)-in. fh screws at each joint. Unclamp the frames, now slightly oversize, and let dry.
Use of Plywood. We cut our principal wood sections out of a \(4 \times 8-\mathrm{ft}\). sheet of \(3 / 4-\mathrm{in}\). sliced lumber core cherry plywood available through cabinet shops and lumber dealers nationally. Ask your source to rip your sheet into two pieces, one being \(181 / 4 \times 96 \mathrm{in}\). It will then be easier to handle when you finish sawing it at home. This piece should be cut from the side and edge having the most beautiful grain.
Put your best hollow ground or planer blade on your table saw and set the rip fence at \(17^{11} / 16\) in. These blades give amazingly

Note: After assembling right and left speaker frames and end pieces, fit ond glue \(1 / 16-i n\). veneer strip as shown in detail B, Fig. 7.



RIP 2 PCS. \(3 / 4^{\prime \prime} \times 8^{\prime}\) SOLID CHERRY \(3-1 / 2^{\prime \prime}\) WIDE, PLACE AGAINST FRONT 3 AND BACK EDGES OF SUB-BASE, AND MITER GAREFULLY FOR EXACT FIT USING DUMMY ENO PIECE. CUT ENO PIECES OF CHERRY TO FIT ENDS, THEN GLUE, CLAMP AND SECURE.
Caution: Assemble subframe before gluing. Affer checking for squareness, cuf X-braces for each end. Disassemble, glue, and complete assembly, including braces. Check for perfect squareness.
smooth surfaces but must be exactly parallel to the rip fence; otherwise gum pick-up and resultant heat burn the wood and rapidly dull the blade.

Parts of the same width are cut at the same time, resulting in fewer settings of the saw and perfect fitting during assembly. With the fence set at \(17^{11 / 16 ~ i n ., ~ r i p ~ t h e ~ n a r r o w ~ p i e c e ~}\) of plywood. Set this piece aside, now cut the two end pieces as one piece of wood \(167 / 8 \mathrm{in}\). wide and 53 in . long. Next cut a panel \(211 / 2 \mathrm{x}\) \(431 / 8 \mathrm{in}\). which will be the base for the control center and front piece of the cabinet. Turn the saw blade to a \(45^{\circ}\) angle and miter the front edge as in Fig. 6A. The long narrow piece left is reversed for use as the front of the inner portion of the cabinet.

Take two \(3 / 4 \times 5 \times 96-\mathrm{in}\). pieces of solid cherry and rip them to \(31 / 2 \mathrm{in}\). wide (we asked our source of supply to plane one edge, which makes the sawing operation easier and gives a perfectly finished top edge). Also cut two pieces \(3 / 4 \times 31 / 2 \times 19 \mathrm{in}\). for the ends of the base. Miter the ends, then glue and screw this "veneer" to the sub-base as in Fig. 4B.

This can be accomplished with only four clamps. Line up one side perfectly and clamp, making sure the loose end pieces fit properly. Drill pilot holes every 18 in . on a line 1 in. from both edges. The holes should be staggered so there is approximately 9 in . between screws. Now remove clamps, apply glue and carefully reclamp back in position. Install screws, remove clamps, and follow the same procedure with the three other pieces. Cut a strip of cherry \(1 / 8 \times 3 / 4 \mathrm{in}\). from one of the remaining 8 -ft. pieces, trim to length,
clamp, and glue onto the long piece of the subframe that was cut to \(33 / 8 \mathrm{in}\). width. Be extremely careful not to let any surplus glue ooze onto an outside surface.

Cut the \(167 / 8 \times 52-\mathrm{in}\). plywood in half and then trim the two pieces together to a length of \(253 / 4 \mathrm{in}\). (Fig. 3C). While cutting this dimension, cut the inner frames (Fig. 4A) to \(253 / 4 \mathrm{in}\). long by \(163 / 18 \mathrm{in}\). wide. It is imperative that these four pieces be identically square.

Select the graining that you prefer to be exposed on the end pieces. On the inside of what is to be the front, rabbet the edge on both pieces as in detail B in Fig. 7.

Speaker Framing Stock. Cut four pieces of \(3 / 4 x^{3} / 4-\mathrm{in}\). cherry 24 in . long, two pieces of the same stock 26 in . long and two \(3 / 4 \times 21 / 2-\) in. pieces 30 in . long. Bevel all of these pieces on one side \(18^{\circ}\) as in Fig. 3B. Trim the two \(30-\mathrm{in}\). lengths to 26 in . and the four \(24-\mathrm{in}\). pieces to \(201 / 4 \mathrm{in}\). long. Do this by first mitering one end, then carefully measuring to the other end and mitering it. Trim the two \(3 / 4 \times\) \(21 / 2 \times 30-\mathrm{in}\). pieces to \(253 / 4 \mathrm{in}\). with the miter being cut last as in Fig. 3B.

Next put the two \(26-\mathrm{in}\). long pieces through the saw and remove \(1 / 10 \mathrm{in}\). of the face (detail B in Fig. 7) to compensate for \(1 / 16\)-in. veneer to be attached later.

Now glue and clamp these pieces, one each, into the rabbets of the already cut end pieces. Scrap from the \(18^{\circ}\) angle cuts can be used to get a square clamping surface. Once these are dry, cut miter and, using the edge of your saw table or other square surface, clamp and glue one of the \(201 / 4\)-in. pieces as in a picture frame construction (Fig. 6B). Since both the
bottom and top edges will be covered, drive a \# \(8 \times 11 / 2\)-in. fh screw from the bottom pulling the corners together. This produces a "professionally" tight joint without special clamps.

Join another \(201 / 4-\mathrm{in}\). piece in the same manner and when glue has dried, take one of the \(21 / 2-\mathrm{in}\). \(\times 253 / 4-\mathrm{in}\). pieces and complete the frame, again screwing from top and bottom. Using the other pieces of end stock, assemble your second frame.

Draw a light guide line \(11 / 16\) in. from the edge across the front of the base (front edge has the \(1 / 4-\mathrm{in}\). strip of cherry glued in) and \(1 / 4 \mathrm{in}\) in from the edge of each end. Set the ends and speaker frames on the guide lines. Then carefully measure, cut, and trim the inner frames. Tack the frames together, trimming both at the same time. While they are tacked, cut a notch \(3 / 4 \mathrm{in}\). deep by \(31 / 2 \mathrm{in}\). wide (Fig. 4C). Use a thread or light string stretched across the end pieces at the front and back corner to check that all four: the two inner frames and end pieces, are the same height and in line.

Cut eight pieces of \(3 / 4\)-in.-square white pine glue strips. Attach them to top and bottom of each end panel and inner frame as in Figs. 4 D and 6 B , using glue and \(\# 8 \times 11 / 2-\mathrm{in}\). fh screws. Check that edges are flush.

Just before gluing end panels in place, mark and cut dadoes for knife hinges on each end as in Fig. 6C. Replace in position, drill four pilot screw holes in both the lower glue strips of the end piece and inner frame. Glue and screw in place as in \#2 of Fig. 6B, and wipe off any excess glue immediately.

Through the bottom of the speaker platform, drill three screw pilot holes and drive three screws to pull the bottom member of the speaker frame down to the base (\#3 of Fig. 6B). Drill and screw the inner and speaker frames together after squaring up. Repeat these operations to assemble and glue the remaining end.

Control Center Construction. Cut a 71/2 x 48 -in. piece of \(3 / 4-\mathrm{in}\). cherry plywood for the control center back piece. Notch ends and cut dadoes as in Fig. 6D and observe the \(453 / 4\)-in. dimension, which is critical. Trial fit back piece into the inner frame notches, and check that the edge should be \(3 / 32 \mathrm{in}\). lower than the top of the inner frames (critical). Glue and screw the back piece in place.

Cut and dado both sides of the control center as in Fig. 6E, using a router or saw and chisels. Carefully position these sides; glue and clamp. Drill holes for and drive \(\# 8 \times 114\) in. \(f h\) screws. Dadoes must match those in the back piece as in Figs. 8 and 9. Properly mounted, side pieces will be \(1 / 18 \mathrm{in}\). below the top of the inner frames.

The previously cut control center base and front (Fig. 6A) can now be installed. Slide the base in place into the side piece dadoes as


Lap-jointed inner frame is supported by heavy member of sub-base. Pine components are concealed by solid and veneer cherry in finished cabinet.
in Figs. 10 and 11 so that mitered front edge is flush with front of the sides. At this point, front and side dadoes were marked as in Fig. 6F to fit our tuner and preamp case. Check yours and modify the panel as needed.
Remove the base, make the marked dado and other cuts. Also cut out the record player mounting hole on the other side according to a template supplied by the manufacturer. In addition, lay out and cut any holes you may need for control switches and meters (Fig. 6G). While doing this, be careful not to dent or scar the mitered edge.

Now trial fit the previously cut front piece (Fig. 6A) to the base. Once satisfied, apply glue carefully to the side panel dadoes and slide the base in position. You've no doubt noticed that the dadoes are slightly wider than the \(3 / 4-\mathrm{in}\). base thickness. After checking that dadoes for tuner and preamp case line up drive wedges in from the underside to push the base up tight. Allow to dry.

Apply glue to mitered edge of the installed control center base and its front piece, place latter in position, and secure with two \(\# 8 \mathrm{x}\) \(11 / 4-\mathrm{in}\). fh screws on each end. Use wood clamps to draw into position, then screw wood strips to base and front inside. Allow to dry.
Record Compartment. A number of remnant pieces were splined together here to reduce waste or scrap to a minimum. Spline cuts were made the same way as other dadoes, with a saw blade making as many runs as needed for proper width.

Cut the floor for the record storage compartment from \(3 / 4\)-in. plywood as in Fig. 7A, dadoing and rabbeting the underside to receive the cross members of the base and cut-
ting \(3 / 8-\mathrm{in}\). wide dadoes with a router bit for partitions and back.
Partitions are shaped from \(3 / 8\)-in. birch plywood and finished with cherry strips splined and glued to the front as in Fig. 7C. If you wish, partitions can be left square so dadoes can be cut with a table saw and hand chisel.
dado to fit over compartment back.
The Tuner-Preamp Case is cut from solid cherry stock, except for the front and top which are \(1 / 4\)-in. cherry veneer. Dimensions given in Fig. 14A are about \(\$ / 18-\mathrm{in}\). longer than the \(1 / 4-\mathrm{in}\). dadoes on the control panel base. This allows them to be easily inserted in


Cut two \(1611 / 18 \times 181 / 8-\) in. pieces from the \(3 / 4\)-in. plywood sheet for end panels, then dado and notch as in Fig. 7D. Cut and dado the solid cherry front and rear top pieces and the birch plywood back as in Fig. 7E.

Glue and screw the record compartment to the frame (Fig. 14). Cut a \(3 / 4 \times 3 / 4 \times 3\)-in. guide block for the top of the record compartment and install it with glue and screws to the inside of control panel front piece as in Fig. 11. Now you can apply glue to bottom dado on left side of record compartment, slide it into position as in Fig. 14 and attach to base of compartment and guide block.

Cut a \(3 / 4 \times 3 / 4 \times 333 / 4\)-in. spacer strip from scrap pine and secure it flush with the bottom of control panel front piece and butting against left side of the compartment.

Glue the vertical dado on the left side of compartment, the dado in the rear of bottom piece, and both dadoes in the right side. Position compartment back and assemble the right side similar to the left. In order, glue compartment dadoes and place them in position; glue and screw front partition, holding bar in forward notches cut in sides; glue and screw rear bar in rear notches in sides, and
place. Rout or drill and chisel the end piece to receive the lid support. No dimensions are given for the preamplifier or tuner cutouts as there are many slight variations and manufacturers supply their own mounting instructions. Also, the position of the tuner's cooling panel may change in order to improve ventilation or for easier tube replacement.
We found the following method easiest for setting and gluing the finished blanks in place. First glue and slide the top in position, then the side. Depth of side is cut approximately \(1 / 18 \mathrm{in}\). short of total height. After the side is in place, slip in a filler strip to bring it to proper height so the miter edge of top and side meet. The strip should be about 1 in . shorter than total length of the dado.

Glue and slip in the front. A number of small clamps are a real asset here. Since this is a focal point of the finished cabinet, be sure to lift all glue that may ooze from the joints. Edges around the tuner vent and preamp are optional. These are \(1 / 4 \mathrm{in}\). square and are glued and screwed to the top after the selected preamp and other equipment were set in for fitting.

Panel Door Building. There are 13 nar-

row doors attached accordion style by concealed hinges. All wood is \(3 / 4-\mathrm{in}\). solid cherry except for the \(1 / 4\)-in. inner frames. To simplify the job, cut all similar parts at the same time. Set up a cutoff gauge on your saw, clamp strips to cut six at a time, making sure the cross feed is perfectly square.

Cut 26 pieces \(11 / 4 \times 253 / 4 \mathrm{in}\). for the sides, 26 pieces \(11 / 4 \times 41 / 4 \mathrm{in}\). for the ends, 13 pieces \(1 \times\) \(41 / 4 \mathrm{in}\). for the centers, and 26 pieces \(315 / 16 \mathrm{x}\) \(103 / 4\) in. for the insert panels, all from \(3 / 4\)-in.
solid cherry. Run off 85 ft . of \(1 / 4\)-in. stock to be machined in two basic operations. Set the saw blade \(1 / 8 \mathrm{in}\). high and dado the strips \(1 / 4\) in. wide as in detail A of Fig 15.

You'll need a molding head cutter to round both edges of the \(1 / 4\)-in. stock, such as Sears \#9H-2352.

Make a jig by taking a strip of scrap wood about \(3 / 4 \mathrm{in}\). thick and 4 in . wide. Saw a dado \(1 / 2 \mathrm{in}\). deep on it with the width just enough to allow the \(1 / 4-\mathrm{in}\). stock to slide through

\section*{materials list-stereo music centek}
\begin{tabular}{|c|c|c|c|}
\hline No. Req. & Size and Description & No. Req. & Size and Description \\
\hline 1 pc . & \(3 / 4 \times 71 / 2^{\prime \prime} \times 10^{\prime \prime}\) pine (sub-base framing) & 200 & " long spiral hardwood dowel pins (Crafts. \\
\hline 1 pc . & 15/8 \(\times 3 \% / 8 \times 48^{\prime \prime}\) pine (sub-hase framing) & & man, 92¢) \\
\hline 2 pcs. & \(3 / 4 \times 7 / 2 \times 96^{\prime \prime}\) pine (inner frames) & 9 prs. & \%/8 \(\times 1{ }^{\prime \prime}\) Soss invisible hinges for doors (Crattsman \\
\hline 1 pc. & \(3 / 4 \times 51 / 2 \times 60^{\prime \prime}\) pine (giue strips) & & \#0100, \(\$ 2.39\) with serews. For this quantity, it is cheaper to order 12 pairs of hinges at \(\$ 21.50\).) \\
\hline 1 pc. & \(3 \times 48 \times 96^{\prime \prime}\) lumber core cherry plywood (top, ends, control center back piece, record compartment floor) & 2 prs. & \(\$ / 16 \times 18 /{ }^{\prime \prime}\) reversible knife hinges (Craftsman \#1595, 544) \\
\hline 1 pc. & \(3 / 4 \times 48 \times 48^{n \prime}\) lumber core cherry plywood (control center base and front piece, record compartment end panels) & 1 & \(48^{\prime \prime}\) tong piano (continuous) hinge \(11 / 10^{\prime \prime}\) wide when opened, with screws (lid hinge) \\
\hline 1 pc. & \(1 / 4 \times 24 \times 36^{\prime \prime}\) cherry plywood (speaker platforms) & 1 & lid support (\#9379, , feft hand style, used in project \\
\hline 1 pc. & \(1 / 4 \times 16 \times 20^{n}\) cherry piswood (tuner-preamp control box top, front) & & available from Lussky, White \& Coolidge, 216 W. Monroe St., Chicago 6, III. Price \$2.68. Cheaper type is new type of adjustable friction brass plated \\
\hline 2 pcs. & 娄 \(\times 24 \times 36^{\prime \prime}\) birch plywood (record compartment par. titions, back) & & support with nyion roller to hold lid at any height. Available as \#7074 from Craftsman, 42 ) \\
\hline & All wood listed below is solid cherry & 3 & \(1 / 4^{\prime \prime} \mathrm{D} . \times 1 / 2^{\prime \prime}\) long magnets with \(1 / 2^{\prime \prime} \mathrm{D}\). steel disk con- \\
\hline 2 pcs. & \(3 / 4 \times 5 \times 96 \prime\) (finished hase, long pieces) & & tacts (door closers-available for \(\$ 1.90\) from J. F. Simpson Co., 4754 W. Washington St., Chicago 44, \\
\hline 2 pcs. & \(3 / 4 \times 31 / 2 \times 39^{\prime \prime}\) (finished base, end pieces) & & Ili.) \\
\hline 4 pcs. & \(3 / 4 \times 21 / 2 \times 30^{\prime \prime}\) (speaker frame strips) & 1 lb . & casein stainless glue (Craftsman \#524C, 85¢) \\
\hline 1 pc. & \(3 / 4 \times 31 / 2 \times 18^{\prime \prime}\) (side of tuner-preamp box) & 1 pt . & contact bond cement (Craftsman \#CBP10, \$1.49) \\
\hline 7 pcs. & \(3 / 4 \times 51 / 2 \times 36^{\prime \prime}\) (door sldes, ends, centers) & 1 qt . & pigmented wlping stain, French provincial (Craftsman \#202, \$177) \\
\hline 7 pcs. & \(3 / 4 \times 319 / 16 \times 35^{\prime \prime}\) (door insert panels) & \(1 \mathrm{qt}\). & wiping stain reducer (Craftsman \#205, 946) \\
\hline 2 pes. & \(3 / 4 \times 78 / 8 \times 167 / 10^{\prime \prime}\) (control center sides) & \[
1 \text { doz. }
\] & \(\# 10 \times 1 / 2^{\prime \prime}\) flathead ( th ) screws \\
\hline 13 pcs. & \begin{tabular}{l}
\(1 / 4 \times 1 / 2 \times 72^{\prime \prime \prime}\) (door inner panels) \\
Note: Solid cherry available at Craftsman
\end{tabular} & 1 pross & \#8 \(\times 11 / 2^{\prime \prime}\) th screws \\
\hline & Servite Co., 2727 S. Mary St., Chicago 8, III. & 1 gross & \#8 \(\times 11 / 4^{\prime \prime}\) th screws \\
\hline & the \(96^{\prime \prime}\) lengths and the \(1 / 4 \times 1 / 2 \times 72^{\prime \prime}\) strips sepa- & 16 & \#8 \(\times 3 / 4^{\prime \prime}\) th screws \\
\hline & rately. An order for 18 sq.ft. of \(3 / 4^{\prime \prime}\) cherry dimension stock in \(42^{\prime \prime}\) lengths and random widths ( \(4^{\prime \prime}\) to \(\mathrm{g}^{\prime \prime}\) ) should be sulficient to cut all other solid pieces. Latest catalon (1962, \#28) price is \(55 \%\) per sq.ft. & \[
\begin{aligned}
& 2 \text { pes. } \\
& \text { M isc. }
\end{aligned}
\] & \(24 \times 29^{n}\) grille eloth (speaker sections) cherry veneer edging \(13 / 16^{\prime \prime}\) wide, 1 pt . linseed oil, 1 pt. turpentine, insulation for speaker cabinets, 1 box \(3 / 8^{\prime \prime}\) brads, 1 box \(14^{\prime \prime}\) tacks \\
\hline
\end{tabular}

Views of left and right sides of control center back piece,
 afler fitting side pieces. Note perfect match of dadoes of each end. Right side piece is cut about 1 in. norrower than recommended in Fig. 6 E.

easily. Now change the saw blade for molding cutters and measure carefully so that when the cutters are raised, one of the beads will be exactly centered in the dado on the guide board: Raise cutters enough to place a rounded edge on stock and run both sides.
To shape the insert panels, change to a molding cutter shape such as that of Sears \#9H-3202 (Fig. 15). Since there is a lot of wood to remove, take three passes to do it.
As you will be cutting against the grain on the ends and there will be slight splintering on the edge, cut the ends first and sides last. This will leave a smooth-finished edge as the splintered portion will be cut away.
Clamping Jig for Dowel Work. Now construct a clamping jig-flat, and with a surface at least \(28 \times 36 \mathrm{in}\). Cut two \(3 \times 28-\mathrm{in}\). pieces of scrap pine and attach them to the base, leaving \(281 / 2 \mathrm{in}\). between the inside edges. Cut a \(111 / 16-\mathrm{in}\). wide strip into two wedges. Lay the pieces for four doors in position: two \(11 / 4 \times\) \(41 / 4-\mathrm{in}\). pieces for ends, one \(1 \times 41 / 4-\mathrm{in}\). piece for the middle.
With the pieces in alignment, lightly drive the wedges into position and mark the dowel guide lines: two for each side top and bottom, and one each side for the center. A Stanley dowel jig and the complete directions that
come with it make easy work of this. To cut dowel holes, we used a Delta \(3 / 8\)-in. spur drill bit with \(1 / 2\)-in. shank.

Mark all door sides and cross members as in Fig. 15 and then drill. Place glue in one side of each door only and tap in dowel pins (the prepared kind, \(3 / 8-\mathrm{in}\). diameter and \(11 / 2\) in. long). Place dry dowels on the other side and carefully tap together.

Again, lift excess glue. Complete four doors in this manner and place in press, driving wedges in fairly snug. As the wedge pressure will tend to raise the doors in the middle, place a board on top, and weights, such as old barbells. Allow to dry. Complete the other doors the same way.

Sand the surfaces flush with medium production paper and finish off with a fine grade. A slight surface variation is possible.

The frames (still with one side not glued) are now ready for fitting with inner frames. For a perfect fit, miter these individually for each opening. Cut all inner frames, then label and bind each set of four separately. We suggest this individual-fit method since it is quite unlikely that each door will have precisely the same measurement.

With the frames intact, apply glue and position inner frames, then secure each end piece


View of control center base during trial fit to check all cuts with equipment selected. Changes should be made and checked again before securing this panel in place. Front panel of base is removed here, exposing gluing strips at joint with bevel of base, also the small guide block for top of the record compartment.
with two \(3 / 8\)-in. brads and each side piece with three brads. Use a small counterpunch to set the brads. Be sure not to glue the miter of the inner frame of the loose side on the door frame-let it dry thoroughly.

Now tap the loose side out and trial-fit completed panels in their respective positions. They should go in freely, not sloppily. Trim any panel edges that need it and, working in groups of four, apply glue carefully to the inner frame dado. When the two panels are in place, glue the loose side and tap into position. Remove dowels, glue these holes, and put the dowels back in place, tapping slowly and with care.

Considerable pressure builds up in the dowel holes and the wood will split unless the glue is allowed to pass by the sides of the dowels. You will be wise to have a partner ready to lift any glue that may ooze out. This type of glue sets rapidly and you cannot
handle both operations on four doors alone.
Now lay the four doors in the wedge vise, set weights on top, and drive home the wedges. This will bring on more oozing of glue, so be ready for it. Use strips of aluminum foil on the bottom and under weights. Finish the remaining doors in like fashion.
Multiple Door Assembly. Lay out the 13 doors across the floor, arrange them for most pleasing appearance, then number them. Rabbet doors numbered 2, 3, 6, 7, 11, and 12 as in the three details in Fig 16A. Install a \(1 / 4 \times 3 / 4\)-in tongue in the rabbets of doors numbered 3,6 , and 11 to lock the sections closed.
Doors 1 and 13 are routed or chiseled out at top and bottom for knife hinges, while the others are hung on Soss invisible hinges. The dowel jig makes installation of this type hinge extremely simple.

When closed, these hinges have \(3 / 64-\mathrm{in}\). spacing between their faces, so take this into ac-


Completed stereo musio center with doors and top open to reveal control and speaker area cabinetry.


Without catinet, the equipment looks like this: preamp over one speaker enclosure, amplifiers (to be remotely installed as in Fig. 2) over the other, record player. Tuner and tweeters not shown.
count when trimming the sides of all doors. When the doors are laid out, the outside edge of end doors should be flush with the respective end panels of the cabinet. The \(3 / 4-\mathrm{in}\). spacing is also carried into the rabbeted edges to allow freedom of opening. Trim ends of doors to \(25 \%\) in., which will allow \(1 / 18 \mathrm{in}\).
clearance at top and bottom.
Working with two adjoining doors at a time, measure and mark a line on each one \(31 / 4 \mathrm{in}\). from the top and bottom. Then, measuring toward the middle, mark at \(1 / 2,3 / 4\), and \(11 / 4 \mathrm{in}\). Drill at these points with a \(1 / 2-\mathrm{in}\). drill, following instructions furnished with the


Note: Dimensions given for top panels are finished measurements. 8e sure to allow for thickness of \(1 / 16\)-in. veneer strip to be added on front and side edges of all three pieces.
hinges for depth and cleanout. Tap hinges in place, drill pilot holes and secure with screws. Finish the hinge installation for the four sets of doors and lay aside.

Check a radial saw to be sure its cut is perfectly square, then take the piece of cherry plywood blank previously earmarked for the top and cut it into three pieces: two \(21 / 8\) in. long and the other 44 in . long.

Final Assembly. Overall length of the cabinet should be \(873 / 4 \mathrm{in}\). If any variance, allow for it in the center panel before gluing any veneer strips. Using a scrap 8 -ft. piece from the base as a straightedge, cut three pieces of cherry veneer \(1 / 18 \mathrm{in}\). thick and \(13 / 18\) in. wide. Attach the veneer to all exposed plywood edges on front and sides, using contact cement. Sand edges flush.
Glue and screw gluing blocks in place on the inside top (flush) edges of outer panels and inner frames. After they are dry, apply glue to the two top end panels, clamp them in position, drill pilot holes from underneath through the blocks and secure with \(\# 8 \times 11 / 4\) in. fh screws.
Screw a \(44-\mathrm{in}\). length of piano hinge in position on the control compartment back panel. Rabbet the inside rear edge of the center top panel, previously cut and adjusted for length, to accept a flush mounting of the piano hinge. Set the panel in place, mark and screw to hinge, using only a few screws until you get it properly centered.
Place the lid support in position in the routed-out side of the preamp-tuner cabinet (Fig. 14A) to locate and drill an adjusting hole through the back panel. Adjust the tension; install support with screws.





B

ASSEMBLY PRONIOES FOR \(1 / 16^{\prime \prime}\) SPACE日ETWEF TOP AND SIOE SUPPORTS FELT DOTS, \(1 / 16^{\prime \prime}\) THICK, ALLOW TOP
TO REST FLUSH WITH TOP OF ENDS

OPENING DIMENSIONS COMPLETELY OPTIONAL AND WILL DEPENO ON PARTICULAR UNITS INSTALLED- MOST PREAMPS CAN BE INSTALLEDIN ANY POSITION BUT SOME TUNERS CANNOT. IT IS BEST TO CAREFULLY CHECK THIS BEFORE CUTTING WOOD. IT MAY BE POSSIBLE AND YOU MAY CHOOSE TO MOUNT THE TUNER VERTICALLY IN WHICH CASE TME MOUNT THE TUNER VERTICALLY CIN WHICH CEASE RRONT GE THE CON
WOULD BE BLAN.


PLASTIC ACOUSTICAL USE PIECE \(24^{\text {m }} \times 20^{\prime \prime}\) FOLD EDGES TO TRIPLE THICKNESS, \(1 / 2^{1 /}\) HEM SECURE TO CHERRY FRAMES WITH \(1 / 4^{\prime \prime}\)
TACKS-SPACED

Opening dimensions depend on style and make of units to be installed. Most preamps can be installed in any position but some tuners cannot. Check units before cutting wood. You may, if possible, choose to mount the tuner vertically, in which case the control section would be blank.


Completed control section and record compartment. Note tiny magnet recessed in front panel. Strong enough to hold doors closed, it releases with a slight pull.


Tuner-preamp case in place. Note ventilator panel and single dial at left which controls iweeter mounted in top outside corner of speaker cabinet adjoining. Tension of bracket can be set to hold lid open as desired.

Using knife hinges, secure both sets of end doors in position. Lay a \(1 / 18-\mathrm{in}\). spacer on the base and set the remaining doors in place, using \(1 / 18\)-in. shims behind doors 4 and 10 . Wedge lightly in position and drill six pilot holes on each side from the rear of the cabinet (doors 4 and 10). Insert \#10 x \(11 / 2\)-in. fh screws (Fig. 16B), check alignment, and drive them home tightly.

Apply a cap strip of veneer in front of the exposed edge of the piano hinge, using contact cement.

Small magnets only of \(1 / 4 \mathrm{in}\), diameter, and \(1 / 2 \mathrm{in}\). long can be imbedded in \(1 / 4-\mathrm{in}\). holes in the cabinet as in Fig. 17 to keep the free doors closed. Small metal plates can be cut into the doors to make contact. Only a \(21 / 2-\mathrm{lb}\). pull will open the doors.

Finishing the Cabinet is a pleasure-there's no long and drawn-out painting or pumice polishing. Remove two center door sections for staining and oiling, then replace.

To complete the cherry finish, we used French provincial pigmented oil stain, cutting it well with the reducer recommended for it. Test it first on scrap pieces to be sure of the correct degree of color depth.

Apply the stain ( \(1 / 2 \mathrm{pt}\). of stain plus 1 pt . of reducer) by dipping a soft, lintless cloth in the can and wiping it over the surface. Remove any excess left standing on the wood and use only the stain immediately absorbed. After a 24 -hour wait for drying, apply a liberal coating of linseed oil and turpentine (2:1) with a clean, soft rag. Wait five minutes, then rub briskly to remove any excess oil. This will give a very rich, non-glossy appearance.

Remember not to start with a too-dark finish. With each subsequent oiling (every three or four months), the finish has darkened slightly. No polishes are needed since the oil application cleanses the wood and continues to protect it.

After the finish, select your grille cloth for the speaker sections and purchase enough to cut two \(24 \times 29-\mathrm{in}\). pieces. Turn the edges over \(3 / 4 \mathrm{in}\). and stitch the edges to triple thickness. Fasten in place with \(1 / 4\) - or \(3 / 8\)-in. tacks. Start at top and bottom centers, stretching the cloth as you tack toward the edges.
Since vibration from the speaker cabinets can be transmitted to both tuner and record player, the least you should do is insulate the bottom. We used \(40-\mathrm{oz}\). rug waffle padding


Completed right side of cantrol panel includes two meters and switch as well as another tweeter control.


Medium and low-range speakers come with this enclosure. Tweeter, control and crossover en top will be mounted in cabinet outside this enclosure.
tacked all around except for the front (Fig. 16D).

If you're using tweeters as we did, install them first, then slide in woofer enclosures. Install the other components, re-balance your record player, and you're in business.

\section*{Soldering with Immersion Heater}

In a pinch, the occasional electronic builder, serviceman, or experimenter can solder wire connections with an immersion heaterlike the one shown. Simply wedge the
 wires between the heater coil turns and plug the heater in intermittently until the joint gets hot enough. Use the heater to aid heating large work when your iron or gun isn't large enough to handle the job.--John A. Comstocz.


This Early American styled cabinet combines modern living with an old design to give you a piece of furniture that is both decorative and functional.

\title{
TV Cabinet
} Any portable or table TV set becomes a
handsome console model when installed
in this Early American styled cabinet

\author{
By RAY AYERS
}

ENJOY the beauty of a console TV without paying the high cabinet price by customizing a cabinet that sheathes your present portable or table model set. Even an old TV chassis can be brought up-to-date by installing it in this Early American styled cabinet.

This particular cabinet was designed to house a table model Motorola, but with a few dimensional changes any model can be adapted to it. If the controls of your set are mounted on the side, an access panel can be made
(Fig. 2A) to permit convenient operation.

First Measure the TV you are going to enclose; then make the necessary dimensional changes directly on Fig. 2 so you won't have to double check every measurement when cutting the materials.

Next, cut the birch (see Materials List) for the front framework and rails to size (Fig. 2). Then shape the \(3 / 4\) \(x 3 / 4\)-in. hardwood corner support blocks for the top shelf. Duplicate the scrolled designs used on the lower part of the front framework and sides, and top rails (Fig. 4) on cardboard, so the design can later be transferred to the wood. The design can be fashioned with a saber or coping saw.

Use blind dowel joints (Fig. 2B) to assemble the front framework. Dowel centers are preferable when spotting the holes in the frame pieces. For greater accuracy in matching the \(5 / 18 \times 3 / 4-\mathrm{in}\). holes, bore them in the horizontal members first. Groove all dowels to allow trapped air and Blue-Bird white glue to escape. Remove the squeezed-out adhesive


2 CABINET CONSTRUCTION
immediately with a moist cloth. Be sure the framework is squared when you set it aside to dry.

Cut the Top Shelf so it overhangs the cabinet by \(1 / 4 \mathrm{in}\). on the sides and \(1 / 8 \mathrm{in}\). on the front and back. This is the only piece of plywood that will have exposed edges; but these edges will later be covered with veneer. Other components that have to be cut from the \(3 / 4-\mathrm{in}\). birch veneer plywood are the sides, TV shelf and mounting rails, and the speaker mounting board. The two stringers used for added support in the back (Fig. 2) can be cut from plywood or \(1 \times 21 / 2-\mathrm{in}\). hardwood.

Disconnect the speaker and use it as a template to locate the center cut-out and mounting holes in the speaker mounting board. Grille cloth can be made from dyed burlap or can be bought in \(12 \times 36-\mathrm{in}\). lengths from many radio and TV supply outlets.

Grille material used in Fig. 1 is described as "Tan with Bronze Threads," pattern 811, and was purchased from Allied Radio, 100 N . Western Ave., Chicago 80. After stretching the cloth across the mounting board, use thumb tacks to hold it in place. When attaching the speaker to the board with wood screws, be sure you don't damage the paper cone.
 sides (Fig. 4), and, if necessary, the side access opening (Fig. 2A), attach the TV shelf mounting rails to the sides with \(11 / 4-\mathrm{in}\). flathead ( \(f\) h) wood screws. Use \(11 / 2-\mathrm{in}\). finishing nails to fasten the sides to the top, and countersink these fasteners when attaching the stringers to the sides so the nails can be covered with wood filler. The nails used to attach the top to the sides are covered by the scrolled side rails.

Molding used to mask the old TV cabinet should not interfere with the viewing area. It should also fit flush against the installed set, which should be back far enough so the standard size louvered doors can close.

The \(1 / 2 \times 2\)-in. cove molding used in Fig. 1 was shaped from solid stock, with all corners mitered. Attach it to the front framework by first drilling \(1 / 8-\mathrm{in}\). pilot holes, then fasten with glue and woodscrews.

Use furniture clamps to hold the frame against the assembled sides and top when you drill the \(11 / 2 \times 5 / 18-\mathrm{in}\). dowel holes. Attach the top to the front with a dowel in front of each side rail (Fig. 2), and with two blind dowel

\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
MATERIALS LIST- \\
EARLY AMERICAN TV CABINET
\end{tabular}} \\
\hline \multirow[t]{2}{*}{Req.} & \multicolumn{2}{|l|}{Size and Description Use} \\
\hline & 3/4 \(\times 11 / 2 \times 24^{\circ}\) birch hardwood & \\
\hline \multirow[t]{2}{*}{\(\frac{1}{1} \mathrm{pc}\)} & \(34 \times 1 / 7 \times 261 / 2^{\prime \prime}\) birch hardwood & back rail \\
\hline & 34 \(\times 2 \times 24^{\prime \prime}\) birch hardwood & frame (horiz) \\
\hline 1
2 pec
2 pes & \({ }^{5} 4 \times 2 \times 34^{\prime \prime}\) birch hardwood & frame (thoriz.) \\
\hline \(1{ }^{1} \mathrm{pc}\). & \(3 \times 3 \times 28^{\prime \prime}\) birch hardwood & frame (vert.) \\
\hline \multirow[t]{2}{*}{1
\(\frac{1}{2} \mathrm{pc}\)
2} & 3/3x4" birch hardwood & \\
\hline & \(1 \times 21 / 2 \times 261 / 2^{\prime \prime}\) hardwood or & corner blocks
stringers \\
\hline & \(34^{\prime \prime} \times 4 \times 8{ }^{\prime}\) Girch veneer plywood & stringers \({ }_{\text {speaker }}\) mounti \\
\hline & & board top, sides, TV shelf, mounting \\
\hline \multirow[t]{2}{*}{\[
\frac{1}{2} \mathrm{pec} .
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
\(8 / 16 \times 60^{\prime \prime}\) hardwood dowel \\
\(31 / 2^{\prime \prime}\) long " \(\mathrm{H}^{+1}\) type antique ham.
\end{tabular}} & rais \\
\hline & & \\
\hline \[
2 \mathrm{pr}
\] & \multicolumn{2}{|l|}{\(31 / 2^{\prime \prime}\) long (sype antique ham. louver doors} \\
\hline \multirow[t]{4}{*}{Mise.} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\#5 and \#6 wood screws, \(11 / 2^{\prime \prime}\) finishing nails, grille cloth and thumb}} \\
\hline & & \\
\hline & tacks, casters, Glu Bird glue, Mini- & \\
\hline & wax stain, Weldwood veneer, louver & \\
\hline
\end{tabular}
joints that are positioned \(83 / 4 \mathrm{in}\). from the sides of the top. Drill the holes for the blind dowel joint \(1 / 2 \mathrm{in}\). into the plywood top and 1 in . into the birch frame.

Make the cabinet mobile by attaching casters (Fig. 2C). The \(3 / 4-\mathrm{in}\). plywood caster blocks should be large enough so the casters clear the cabinet when it turns.
The type of flooring you have will determine how far the casters should extend below the cabinet. A \(1 / 4-\mathrm{in}\). clearance between cabinet and caster is enough on tiled floors or on carpeting not backed with a thick pad. Use \(11 / 2-\mathrm{in}\). dowels to hold the caster mounting blocks in place.

While the cabinet is still resting on the top, glue the \(3 / 4 \times 3 / 4-\mathrm{in}\). corner blocks in the angles formed where the top meets the front, and the back stringer.

Final Step is to install the TV shelf and the top rails. Position the shelf and drill two pilot holes on each side so \(11 / 2-\mathrm{in}\). fh wood screws can be driven in to add further support to the cabinet.

Cut the scrolled design on the side rails (Fig. 4), then attach them to the top with \(5 / 10 \times 2\)-in. dowels. The back rail fits between the side rails, and is held in place with three dowels.
The Weldwood veneer strip used to cover the exposed edges of the top can be applied with glue and pressed in place with a small block (Fig. 3). An excellent bond can be assured if a hot iron is run over the strip immediately after it is positioned. After the glue sets, trim any surplus veneer edge with a razor blade and sand smooth. Since the veneer strip is so thin, no mitering is required, only a light sanding and rounding of the edges.

Lightly sand the cabinet with a fine abrasive paper and slightly round off the edges. After thoroughly cleaning the wood surfaces, apply a light coat of Miniwax Early American stain. Brush on two coats of clear lacquer. Rub on several coats of paste wax.

\section*{A Musical Annunciator}


With this device hooked into your front door-bell circuit, you substitute the soft, tinkling tones of a music box for the jangle of bell, rasp of buzzer or raucous ding-clang of chimes

\section*{By HARTLAND B.}

SMITH, W8VVD

An electronically amplified Swiss musical movement (at left front) makes a pleasant door annunciator.

THE heart of this annunciator is its Swiss musical movement. Powered by a miniature \(110-\mathrm{v}\), shaded-pole motor, this movement will play a 20 -second excerpt from one of your favorite melodies. (The available tunes range from Adeste Fideles to the Third Man Theme, so you should have little difficulty in finding a composition to suit your taste.)
If this tiny music maker is to be heard throughout your home, however, some form of amplification must be employed-and the amplifier must be ready to operate the instant the front door button is pressed.
For economy's sake, no power should be drawn by the unit during standby periods. Consequently, heater-type vacuum tubes cannot be used. The choice, therefore, lies between battery tubes and transistors. Despite continued transistor price reductions, the capacitors, transformers, etc. needed for transistor circuitry are still relatively expensive. In contrast, the parts required for a vacuumtube amplifier are quite reasonable and, in addition, many are likely to be found in the aserage experimenter's junk box. For this reason, the unit shown in Fig. 1 utilizes fila-ment-type tubes rather than transistors.

An inexpensive high-output crystal lapel mike converts the sound produced by the musical movement into electrical impulses. These impulses are fed to the control grid of vacuum tube V1 (see Fig. 2). A dynamic mike cannot be employed at this point, be-

cause it would be sensitive to the hum resulting from the magnetic field that surrounds the motor. A vibration pickup mike, as used for electric guitars and similar musical instruments is also impractical, because of its sensitivity to the mechanical noises generated as the motor and its associated gearing operates.

Because of this mechanically generated noise, a relatively shockproof bracket (see Fig. 6) must be used to mount the mike. This bracket makes use of a small section of plastic sponge to deaden vibrations which would otherwise travel up the mount and excite the mike.
In most respects, the four-tube amplifier is of conventional design. Since the power capability of a single 3 Q5GT is rather limited, two of these tubes are operated in parallel. The extra 3Q5GT provides a very useful increase in power output. Parallel, instead of push-pull operation was chosen because no phase inverter tube is needed and an inexpensive output transformer can be employed. Preliminary tests of the completed amplifier showed that its overall gain was so high that there was a tendency toward self-oscillation when the volume control was well advanced, but the addition of resistor R9 (see Fig. 2) provided sufficient inverse feedback to lower the gain and completely eliminate the oscillation problem. The use of inverse feedback also


Top-chassis (above) and bottom-shassis (below) views of annunciafor circuifry.
 improved the frequency response and minimized distortion in the output stage.

When the annunciator is first plugged into the line, no power can be drawn because relay RL2 is open. However, as soon as the pushbutton is pressed current from the \(9-\mathrm{v}\) battery will flow through the coils of RL1, RL2, and RL3. Relay RL2 closes and applies 110 volts to the primary of T2, to the heater of delay relay (RL4), and to the motor of the musical movement. Relay RL1 closes and applies filament power to the tubes. The amplifier becomes operative at once and the tones of the musical movement are heard via loudspeakers placed in convenient spots throughout the home.

Relay RL3 also closes at the instant the button is pressed. The contacts of RL3-as long as RL4 or S1 remain closed-act as a short across the pushbutton. Thus, current continues to be supplied to the coils of RL1, RL2 and RL3 via the contacts of RL3, even
after the visitor stops pressing the button.
As the unit operates, the heater in RL4 warms up. After a period of approximately 10 seconds, it becomes so hot that the bimetal arm in RL4 bends far enough to open the normally closed contacts of this relay. At the moment, this action has no effect on the operation of the musical movement or amplifier because the points of RL4 are paralleled by those of S1, the miniature snap action switch operated by the cam on the shaft of the musical movement. As soon as the \(20-\) second tune has been completed, the cam opens S1, breaking the current path from the \(9-\mathrm{v}\) battery to the coils of RL1, RL2 and RL3. The relays open and the entire unit shuts down until such time as it is reactivated by the push-button.

The cam on the music box is constructed from a short length of volume control shaft and a 6-32 machine screw (see Fig. 5). This

cam must be so positioned that it actuates the lever of S1 when the tune on the barrel has been completed.

The power transformer T2 in Fig. 3A happens to be a surplus unit designed to provide 125 v at 25 ma and 6.3 v at 1 amp . A suitable substitute would be a Knight 62G008 which furnishes 125 volts each side of center-tap,
plus 6.3 v . Only half of the high-voltage secondary on the 62G008 should be employed with the center-tap going to R12 and one end of the high-voltage winding going to R10. Since the other end of the secondary and the \(6.3-\mathrm{v}\) leads are not required, clip them short and insulate with electrical tape.
The two small batteries B1 and B2 are subjected to so little use in this particular device that they can be expected to have almost shelf life. Consequently, the battery cost per month will be insignificant.
Constructed on a \(11 / 2 \times 51 / 2 \times 9-\mathrm{in}\). aluminum chassis, the amplifier is easy to wire since there is plenty of room between the components for the tip of a soldering iron. The armatures of the three small relays are directly connected to the frames. Therefore, RL2 and RL3 should be insulated from the chassis. Figure 3 B shows how these relays are mounted on a thin sheet of Bakelite. Any easily worked plastic can be substituted for the Bakelite.

No knob is needed on the shaft of R4. Once the volume has been set to the desired level, no further adjustment is necessary. Battery B 1 is kept in place with a home-made battery holder (or use a commercially built holder, such as a Keystone type 175). Two L-shaped brackets bent from small pieces of aluminum clamp battery B2 in position. Since the No. 5
\begin{tabular}{|c|c|}
\hline & MATERIALS LIST-MUSICAL ANNUNCIATOR \\
\hline Desig. & Description \\
\hline R1, R6, R8 & 2.2 megohm, \(1 / 2\) watt (Allied 1 m moos) \\
\hline R2 & 1 megohm, \(1 / 2\) watt (Allied 1 mm000) \\
\hline R3, \(R 7\) &  \\
\hline R9 & \(330,000 \mathrm{ohm}, \mathrm{q}\) watt (Alied 1 m, \\
\hline R10 & \(75 \mathrm{ohm}, 1 / 2\) watt (Allied 1 mmovo) \\
\hline R11 & \(560 \mathrm{ohm}, 1 / 2\) watt (Allied 1 mmo00) \\
\hline R12 & \(330 \mathrm{ohm}, 1 / 2\) watt (Allied 1 m mooo) \\
\hline R4 & \(500,000 \mathrm{ohm}\) volume contron (Allied 29 M 773 ) \\
\hline R5 & 33,000 ohm, 1 watt (Allied \(1 \mathrm{mmo20}\) ) \\
\hline C1, C2, C3, C4 & .01 mfd . dise ceramic capacitors (Alied 112437 \\
\hline C5 &  \\
\hline C6 & \(20-20 \mathrm{mf}\)., 150 y electrolytic capacitor (Alled 161236 ) \\
\hline C7 & \(100 \mathrm{mf} ., 15 \mathrm{r}\). electrolytic capacitor (Allied 16286 ) \\
\hline RLI, RL2, RL3 &  \\
\hline RL4 & Amperite 115C10T miniature delay relay (Alied \\
\hline T1 & Stantor A-3822 4 watt universal output transformer (Aliedr (Allied \\
\hline T2 & Knight power transformer
\[
62 G 008)
\] \\
\hline B1 & \(11 / 2\) v size D A battery (Allied 80j903) \\
\hline B2 & \(9 \%\) battery V 3.305 (Allied 800838 ) \\
\hline SR1 & Federal 1002A, 65 ma. rectifier (Allied 4A606) (Allied 34B848) \\
\hline S1 & Unimax USML SPDT Subminiature leaf switch (alled 34B080) \\
\hline TS1, TS2 & 2 screw terminal strip (Allied \(41 \mathrm{H505}\) ) \\
\hline Mic & Crystal lapel Mike (Lafayette PA-9) \\
\hline Battery Holder & for 1 size D cell (Lafayette MS-175) \\
\hline Fuse & \(3 A G 1 / 2 \mathrm{amp}\) (Allied 528232 ) \\
\hline V1, V2 & 105 tube \\
\hline \multirow[t]{12}{*}{V3, V4 Musical movement} & 305GT tube 190 y 60 eps with extended shaft. From Novelties \\
\hline & Reuge ELR \(1.18110 \mathrm{y}, 60 \mathrm{cps}\) with extended shaft. From Novelites of Distinction, 131 West 42nd St., New York 36, N. Y., of direct from the manufacturer, Reuge S.A., 26, Rue des Rasses, Ste. Croix, \\
\hline & Switzerland. \\
\hline & one 9-prong miniature socket for RL4 (Allied 41H534) \\
\hline & two 7-prong tube sockets with shield (Allied 40H194) \\
\hline & two \(13 / 4{ }^{\text {m }}\) tube shields (Allied 40 H 198 ) \\
\hline & open-end chassis \(11 / 2 \times 51 / 2 \times 9 /\) (Allied 80p440) \\
\hline & fuse clip (Allied 523292) \\
\hline & three terminal tie-point strip (Allied 41H501) \\
\hline & \(5^{\prime \prime}\) loudspeaker, 3.2 -ohm voice coil (Allied 810617) \\
\hline & wall bafle for \(5^{\prime \prime}\) speaker \\
\hline & wire. power plug, assorted \(4-36\) and 6.32 screws and nuts \\
\hline
\end{tabular}

SHOCK PROOF MOUNT FOR MICROPHONE
pin on a \(1 U 5\) and the No. 1 and 6 pins of a 3Q5GT are not connected to elements within the tubes, those terminals on the sockets can be used as convenient tie points to support resistors and capacitors. Grid bias for the 3Q5GT's is obtained from the voltage drop across R12. Capacitor C7, the bias filter capacitor, must be wired with its positive terminal grounded.
Locate the amplifier where output from the speakers cannot get back into the microphone to produce acoustical feedback-put it in the basement or, if you have no basement, in a utility room. Wherever you put the amplifier, make certain that it is out of reach of your youngsters. With the exception of the terminals on the motor of the musical movement, which ought to be insulated with electrical tape, all high voltages appear only on the under side of the chassis. A fuse has been included as a protection against overheating which might result from a shorted component.

Once it has been permanently installed, plug the amplifier into the power line and run a pair of wires from TS2 to a pushbutton near the front door. Run a second pair of wires from TS1 to the main speaker which may be a \(4-\mathrm{in}\). or 5 -in. unit with an impedance of 3.2 ohms. Mounted in a wooden baffle, this speaker can be placed at a convenient point in the most lived-in section of your
home.
Overall volume in any one part of the house need not be high, since additional speakers can be placed in those areas where the sound of the main speaker does not penetrate adequately. These extra speakers can be wired in parallel with the main speaker as shown in Fig. 2. Since the desired volume level at remote locations will normally be less than that of the main speaker, intercom replacement units with \(45-\mathrm{ohm}\) voice coils will work effectively in these spots. Each intercom speaker will give adequate acoustical output to cover a room or two, but because of the relatively high impedances involved, even when several are connected in parallel, they will not seriously shunt the \(3.2-\mathrm{ohm}\) main speaker.
The electronically amplified music box, as a replacement for an ordinary door bell or chime has a number of important features, in addition to its basic one of providing pleasant music. Unlike the ordinary bell or solenoidoperated chime, it plays for a period of 20 seconds, whether or not the pushbutton is held down. The sound of a doorbell is usually of rather short duration and is often masked by noises around the house. On the other hand, the continued output from the music box tends to get through such distractions as children's voices, loud hi-fi's, clacking typewriters, and pounding hammers.


\section*{Door Bell Silencer}

HERE'S a simple way of silencing that door bell so that it won't wake babies taking afternoon naps.
Obtain a small twist switch with threaded shaft and nut for mounting from your hardware store. Remove the cover or housing from your door bell and drill a hole through it large enough to pass the threaded shaft on the switch (Fig. 2). Make sure the switch parts inside the housing won't interfere with the bell mechanism.
Remove the wire coming from the bell

transformer from its terminal and connect one of the pigtail wires on the switch to the transformer terminal. Then connect the transformer wire to the other pigtail wire on the switch by twisting them together and taping.
You don't have to turn off the house current for this job-house bell circuits carry only 6 volts.
Replace bell housing, and have someone press door bell button so you will know if the switch is in the "on" or "off" position.

\section*{SHORTY:}

\section*{the Compact 3-Band Antenna}

\author{
By JOE A. ROLF, K5JOK
}

construction detalls


LIMITED in antenna space? Here is an inexpensive three-band system that will fit the average backyard and is ideal for the novice amateur operator since it's designed for 80,40 , and 15 meters.

The system is constructed with 300 -ohm television twin lead and consists of a 40- and

80 -meter dipole with the same feed line at the center. The entire system is "shrunk" to 100 ft . by bending the 80 -meter section back 12 ft . at each end. There is no noticeable sacrifice in performance.

Construct the antenna to the dimensions of Fig. 2, using a grade of TV twin lead such as Belden 8230 that is strong enough to stand the stress. Start by cutting two \(50-\mathrm{ft}\). lengths of twin lead and attaching an egg insulator to one end of each piece. Tie the other ends to a single insulator to form the center feed point as in Fig. 1.

From each outer end, measure back 12 ft . toward the center, then remove a \(5-\mathrm{ft}\). section of conductor from one side of the twin lead. Attach the feed line and the system is ready to go on the air.
Either 72 -ohm coax or twin lead may be used for feeding the system. A 72 -ohm twin lead reduces the weight which the antenna must support and keeps the system electrically balanced. There's an advantage to coax, however, in that it reduces feed line radiation and will prove easiest to connect to most transmitters. If neither is available, a good grade of plastic lamp cord can be used.

You should obtain adequate results with this antenna system of 80,40 , and 15 , and it will also work fairly well on 20 and 10 meters. But for the best overall performance, use an antenna tuner, if available.

- When small, bare uninsulated test clips are used on 'hot' wires connected to live circuits, insulate the clips with rubber-tire patching. When ordinary clip insulators aren't available, tire-patching covers come in mighty handy. Simply sandwich the clip between two of the patches and bring the outer edges together and squeeze. The adhesive on the patching is sufficient so you won't need to use rubber cement.-J. A. C.

\section*{Rubber-Mount Treble Speaker}
- Rubber suction cups are ideal shockmounts for treble loudspeakers. They make good mechanical mounts and acoustically isolate the speaker frame from cabinet panels
which tend to accentuate the bass frequencies. Attach the cups to the speaker frame with screws (get the kind of cups having threaded inserts or screws) and to the cabinet panel with rubber or service cement.-Joнn A. Сомstock.

\section*{Easy Color Coding}

- Perhaps the easiest way to color-code test clips used for marking circuit wires or parts to aid servicing is to attach a colored dressmaker's pin to each clip. The colored head of the pin sticks out like a sore thumb against wiring. What's more the pins are inexpensive and available in dozens of colors.-J. A. C.


S\&M Boat Designer Bill Jackson demonstrates search method. A \(26-\mathrm{in}\). loop is wired into a \(100-\mathrm{ff}\). cable made of lamp cord. When the coil approaches the metal object, a change in tone is heard.

\title{
Underwater Metal Locator Pinpoints Submerged Treasure
}


This small coil locates pipes buried in walls, floors, and concrete and can also be used to search for buried metal objects.

\author{
By JAMES E. PUGH JR.
}

\section*{Craft Print Project No. 341}

WHETHER you are searching for a lost outboard motor or sunken loot, this easy-to-build underwater metal locator can make an otherwise impossible job both productive and interesting.

Just drop your search coil overboard, make a few easy tuning adjustments, then start searching. As the submerged coil nears a metal object, a tone is heard in the earphones. Since the detector responds to both ferrous and non-ferrous metals it is possible to locate nearly any metal object at the bottom of bays, rivers, lakes, and streams.

A low-frequency inductance bridge circuit minimizes the effect of water and cable length on sensitivity. This makes it possible to use an inexpensive unshielded cable, a \(100-\mathrm{ft}\). length of rubber covered lamp cord between control box and search coil. If your treasure lies in deeper water this cable can be lengthened to 500 or 600 ft . with only a minor circuit adjustment. Similarly, it can be shortened to as
little as desired if you plan to work in shallow water or on dry land.

Besides the many possible underwater applications, this metal detector with a smaller coil can be used by landlubbers for finding buried pipes and tanks, shell fragments in old battlefields, ore deposits near the surface of the ground, and metal in lumber, logs, and livestock feed.

Transistorized circuitry is used for minimum weight, maximum battery life, and greatest resistance to mechanical shock. The inexpensive penlight size cells, easy to obtain, last about 100 hours in the oscillator and 200 hours in the amplifier section.

Detection range depends on size of the object, skill of the operator, and type of metal. Iron, steel, lead, and aluminum can be detected at a greater range than brass and copper. A small camera can be found at about 1 foot from the coil and a large outboard motor at about 4 feet. Maximum range is about 5 feet.

Drill the Case as shown in Fig. 3. Holes are the same on the front and back, for mounting of controls and jacks. Wire the battery clips in series, and solder each lug to its eyelet to avoid a possible source of trouble later. Bend each end of the battery clips inward to obtain a firm connection with each battery as a high resistance contact can cause noisy and erratic operation. Put a dab of red paint near the positive terminal of each clip and fasten the battery holders in the case. Mount the other parts in the case and wire the negative battery terminals to the two switch sections.

Start construction of the two plastic chassis (Figs. 5 \& 6) by drilling all holes and mounting the terminal lugs. Mark C, B, E, +, and - near the transistor and battery connections. Identify the lugs on both sides to help avoid wiring errors and to make circuit tracing easy. Position the larger parts and wire. Solder resistors, capacitors, and interconnecting wires next and the \(1 \%\) resistors


\section*{materials list-ELECTRONIC METAL LOCATOR}
\begin{tabular}{|c|c|}
\hline ts & Size and Description \\
\hline V1 & 2N217 PNP transistor, RCA (Newark 21F7004) \\
\hline V2 & 2N647 NPN transistor, RCA (Newark 21FX7105) \\
\hline \(v 3\) & 2N270 PNP transistor, RCA (Newark 21F7010) \\
\hline V4, 6 & 2N649 NPN transistor, RCA (Newark 21FX7106) \\
\hline V5 & 2N408 PNP transistor, RCA (Newark 21F7019) \\
\hline T1, 2 & 20,000 101000 ohm transistor transformer, Argonne AR- 104 (Lafayette AR-104) \\
\hline T3 & 500 ct to 500 ohm et transistor transformer, Argonne AR-162 (Lafayette AR-162) \\
\hline 12 & 5.4 Hv variable inductor, UTC VIC. 15 (Newark 3F414) \\
\hline L1 & search coil (info. for 3 sizes of search coils in Sept. '62 S\&M)) \\
\hline C1 & . 006 MF, 100-v., EIMenco 1 DP-1-602 (Newark 14F1001) \\
\hline C2, 3 & . 25 MF, 100-v., EIMenco 10P.3-254 (Newark 14F1021) \\
\hline & . 1 MF, 100-\%., ElMenco 1DP.2-104 (Newark 14F1017) \\
\hline C5 & . 01 MF, 100-v. ElMenco 10P.1-103 (Newark 14F1004) \\
\hline C6 & 1400 to 3055 M MF mica paddler, ElMenco 315 (Newark 14F817) \\
\hline C9 & .0075MF, 100-v., ElMenco 10P-1-752 (Newark 14F1003) \\
\hline C11 & . 05 WF, 100-v., ElMenco 1 DP-2.503 (Newark 14F1013) \\
\hline R1 & 1.2K, \(1 / 2 \mathrm{~W}, 10 \%\) carbon (Lafayette RS-10) \\
\hline R2 & \(2.7 \mathrm{~K}, 1 / 2 \mathrm{w}, 10 \%\) carbon (Lafayette RS-10) \\
\hline R3 & 2K potentiometer, linear taper, Mallory U-6 (Lafayette VC-419) \\
\hline R4, 5 & 10K, \(1 / 2 \mathrm{w}, 10 \%\) carbon resistor (Lafayette RS-10) \\
\hline R6 & 2.2K, \(1 / 2 \mathrm{w}, 10 \%\) carbon resistor (Lafayette RS-10) \\
\hline & \(3.9 \mathrm{~K}, 1 / 2 \mathrm{w}, 10 \%\) carbon resistor (Lafayette RS-10) \\
\hline R8. 20, & \(2682 \mathrm{~K}, 1 / 2 \mathrm{w}, 10 \%\) carbon resistor (Lafayette RS-10) \\
\hline R9 & \(56 \mathrm{hmm}, 1 / 2 \mathrm{w} .10 \%\) carbon resistor (Lafayette RS.10) \\
\hline R10 & 18K, 1/2 w, 10\% carbon resistor (Lafayette RS-10) \\
\hline R11 & \(3.3 \mathrm{~K}, 1 / 2 \mathrm{~W}, 10 \%\) carbon resistor (Lafayette RS-10) \\
\hline 812 & 330 ohm. \(1 / 2 \mathrm{w}, 10 \%\) carhon resistor (Lafayette RS.10) \\
\hline R13 & \(500 \mathrm{hm} .1 / 2 \mathrm{~W} .1 \%\) deposited carbon, Aerovox CP1/2 (Lafayette CP.1/2) \\
\hline P14 & about 1.5 megohm, \(1 / 2 \mathrm{w}, 10 \%\) carbon (see text) (Lafayette RS-10) \\
\hline A15 & \(91 \mathrm{~K}, 1 / 2 \mathrm{~W}, 1 \%\) deposited carbon, Aerovox CP1/2 (Lafayette CP-1/2) \\
\hline R16 & 11K. \(1 / 2 \mathrm{w}, 1 \%\) deposited carbon. Aerovox CPI 2 (Lafayette CP. \(1 / 2\) ) \\
\hline R17 & 20K potentiometer, linear taper, IRC Q 11-119 (Lafayette VC-940) \\
\hline R18 & 250 ohm . potentiometer, linear taper, IRC a 11-201 (Lafayette VC-961) \\
\hline R19. 21, 24, & \(254.7 \mathrm{~K}, 1 / 2-\mathrm{w}, 10 \%\) carbon (Lafayette RS-10) \\
\hline R22 & 5 K potentiometer, audio taper, Mallory U-12 (Lafayette VC-423) \\
\hline Sl. 2 & DPST switch, mounted on R22, Mallory US-27 (Lafayette VC-524) \\
\hline B1, 2 & \(6-4\) batteries ) 8 - \(11 / 2\)-volt Burgess 930 cells) (Lafayette BA-174) \\
\hline & battery holders for 4 type \(\mathbf{Z}\) cells (Lafayette MS-182) \\
\hline 1 & \(6 \times 5 \times 4^{\prime \prime}\) gray hammertone aluminum box, Bu」 AU1029HG (Newark 91F718) \\
\hline 2 & rubber headphone cushions (Lafayette MS-34) \\
\hline 8 & \(1 / 4^{\prime \prime}\) dia. \(\times 3 / 4^{\prime \prime}\) threaded bushings, 6.32 thread (Newark 31F973) \\
\hline 3 & 11/2" skirted knobs, Davies 4104 (Ntwark 26F024) \\
\hline 4 & 5/8\% dia. rubber feet (Lafayette P-252) \\
\hline 1 & shoulder strap and mounting hardware (at camera store) \\
\hline 2 & \(31 / 2 \times 33 / 4 \times 3 / 32^{\prime \prime}\) Bakelite sheet \\
\hline 33 & Turret terminal lugs, USECO 1350C for \(3 / 3 z^{\prime \prime}\) chassis (Radio Shack 16J432) \\
\hline J1 & female receptacle, Amphenol 61-M1P-61F (Newark 39F116) \\
\hline J2 & phone jack, Switchcraft 11 (Newark 39F782) \\
\hline P1 & male plug, rubber covered (Newark 36F864) \\
\hline P2 & phone plug, Switcheraft 220 (Newark 39F768) \\
\hline Phones & 5000 ohm magnetic headphones, Cannon Am-15-5 (Lafayette ME-32) Note. Standard 2K phones will also work \\
\hline Misc. & wire screws, nuts. washers, solder lugs, gaskets, rosin core solder \\
\hline
\end{tabular}

and transistors last. Hold these smaller parts with long nosed pliers to avoid damage from heat, being especially careful with the transistor and the \(1 \%\) resistors.

Solder the wires connecting these two chassis to the jacks, batteries, switches, and controls to the chassis leaving adequate length to connect to the desired points. Trim and tin the ends, then when the chassis are mounted in place they can be soldered to the various parts in the case without risking damage to the small parts.

After all chassis wiring is completed, but
before mounting in the case, clean the rosin off with alcohol. Then spray thoroughly with CRC 2 -26 waterproofing solution. Allow excess to drip off and carefully wipe with a clean, dry cloth. Be careful that you don't wipe the color code off the resistors. Spray the various controls (protect openings with tape) wipe off the excess, and then mount the chassis in the case and solder all interconnecting wires. Remove the headphone covers and diaphragms and spray the inside and cords. Wipe dry and reassemble.

Make gaskets for both control box covers

from rubber electrical tape or a thick gasket material. Fasten to the covers, and if you use the rubber tape, apply talcum powder to the upper surface to prevent its sticking to the case.

Principle of Operation. Transistor V1 (Fig. 4) is a stable, low distortion audio oscillator operating at approximately 1000 cps . Transformer T1 provides feedback as well as coupling from V1 to V2. R3 controls the oscillator feedback, thus the signal level and purity.

A voltage divider consisting of R5 and R6 reduces the input to V2 to a suitable level so as to help keep the waveform free from dis-
stability during temperature change at the least cost.

When the bridge is balanced, the signal transferred through it from the oscillator to the amplifier is minimum. When the search coil is brought near a metal object its inductance changes. This' unbalances the bridge and permits some of the signal available across the secondary of T3 to be transferred to the amplifier where its level is increased and fed to the headphones. Therefore, as metal is approached a 1000 -cycle note will be heard in the headphones-the closer and larger the metal the louder the signal will be.

tortion. Transistor V2 amplifies the signal and isolates the oscillator from the output stage. This isolation improves oscillator stability since it prevents any change in the bridge circuit from reflecting back to the oscillator.

The output stage increases the voltage level to the bridge circuit for maximum detection sensitivity at the lowest harmonic distortion.

The bridge is a conventional Maxwell inductance bridge with the search coil L1 used as its inductive arm. Balance is obtained by comparing C5, C6, R14, R15, and R17 with L1. C6 is a trimmer capacitor used to compensate for manufacturer's variation in C5. It makes it possible to balance R18 at any convenient point of its range. Deposited carbon resistors at R13, R15, and R16 give maximum bridge

An adjustable filter consisting of C9 and L2 is tuned to 1000 cycles. It helps to increase the sensitivity by reducing the harmonics of the 1000 cycle note, thus makes small changes in the signal level more easily noticed. It also helps reduce 60 -cycle pickup when operating the search loop near ac lines.

Capacitors C4 and C11 resonate with T3 and the headphones, respectively, to further improve the sensitivity by increasing the signal to harmonic ratio.
Separate batteries are used for the oscillator and amplifier sections to avoid coupling the signal from oscillator to amplifier through any circuit external to the bridge. This gives a better null when the bridge is balanced and maintains optimum sensitivity.

Now we shall describe the construction and use of three search coils that operate with the electronic detecting circuit. The largest coil (Fig. 7A) is designed for underwater use, while the \(7-\mathrm{in}\). coil is intended for use on land in finding buried pipes and cables. The small, \(23 / 4-\mathrm{in}\). coil will locate nails and even large tacks buried under plaster, or in auto tires.
Let's Start with the \(171 / 2 \times 26^{1 / 2}\)-in. oval search coil. Steam and bend the wood loop to shape (Fig. 8). Butt the ends together
a small rod through its hub so it will unwind easily without kinking. The rod can be held in a vise or with a cardboard box to keep it from shifting.
Pull about 1 ft . of the wire through one of the \(1 / 16-\mathrm{in}\). holes in the frame and anchor by looping around the edge of the frame and back through the hole. Tape this end of the wire down to the inner face of the coil frame to keep it out of the way until the coil is wound.

Wind one turn about \(1 / 8 \mathrm{in}\). from the edge


Working from a boat or dock the lorge loop finds lost outboard motors, cameras and even keys. A small loop wound on a plastic fumbler detects nails and pipes in the wall.
and glue the \(5-\mathrm{in}\). strip of wood on the inner surface of the frame. Clamp tightly to dry. When dry, sand and drill a \(1 / 16\)-in. hole about \(3 / 32\) in. from each edge of the frame where the 5 -in. joint is fastened.

If you prefer an easier way, the inner hoop from an \(18 \times 27-\mathrm{in}\). quilting frame (available at Sears, Roebuck) can be used instead. Trim the wood brace on the inner surface down to \(1 / 4\) in., drill the \(1 / 16\)-in. holes, and it's ready.

Winding the Coil. Find a clean, comfortable place to work, perhaps over a rug or heavy canvas to avoid scraping the insulation off the wire. Arrange the spool of wire with
of the frame and tape in place at \(5-\mathrm{in}\). intervals. With the frame supported across the knees, rotate the frame with one hand and lay the wire on with the other hand. Press the wire in place with the thumb of the hand rotating the frame. Wind 10 turns and place strips of masking tape across these turns at 10 -in. intervals. Every 10 to 15 turns, temporarily fasten the winding end down with masking tape and move these strips over to prevent wires from slipping off. Halfway through, and at the end of each layer, check that all wires are pressed together firmly, but do not push the outer turns off the frame.

Put 50 turns on the first layer. After adjusting the winding evenly on the frame, tape it down firmly with masking tape at 5 -in. intervals. Remove the temporary strips of tape and save them for the next layer.

Start the First Turn of the second layer in slightly from the last turn of the first layer and tape. Wind 47 turns for the second layer, keeping it taped down as you go as with the first layer. Tape firmly in place at \(5-\mathrm{in}\). intervals between the strips holding the first layer.

Repeat this procedure for a third layer of 44 , a fourth of 41 , and a fifth of 38 turns. The five layers total 220 turns. Loop the end of the last turn through the second \(1 / 16\)-in. hole, tape the entire wind-ing-down firmly, and the winding is done.

Next, assemble the search coil terminal strip up to the first nut (Fig. 8A). Tighten these nuts securely and tape this section of the terminal strip to
 the coil frame. Cut the coil wires, leaving 3 to 4 in . of slack, and carefully solder to the lugs. Fasten securely to the terminal strip with the second lock washer and nut, and tape the wires down, making sure there are no sharp bends or kinks.

Fiber Glass Tape and Resin coating waterproofs the coil. Add white coloring to the resin to make the coil visible in the water and to help avoid the chance of damaging it when not in use.

Follow the manufacturer's mixing instructions exactly. Work in a clean, warm, dry place \(\left(75-80^{\circ}\right)\), but not in the sun. After mixing the activator with the resin, you will have to work fast, because the mix jells in 30 min utes. Until then, the resin is fluid and easy to work, but as it starts to set it stiffens rapidly.

Roll the fiber glass tape into a small roll for easy handling. Keep hands away from the eyes, and keep children away. Fiber glass is safe and easy to use if you are careful, but
the tiny glass particles can irritate eyes and skin.
Open the resin and pour into a pint jar that can be sealed. With everything ready, pour 4 oz . of the resin into a small can, mix in about 1 teaspoonful of the white coloring, add the exact amount of activator, and stir thoroughly.

Using a 1-in. Paint Brush, generously coat the area around the wood brace and terminal strip, and about 1 ft . beyond with resin. Hook the fiber glass tape end over the terminal strips as an anchor and spiral-wind the tape to the end of the resin-coated section. Wrap snugly and overlap the windings about 2 in . Coat another 10 in . of the coil and frame with resin and wind on more tape to cover. Repeat until the entire coil has been covered. Overlap the start of the winding with one or two turns and tie the end down with a long strand of fiber glass taken from one edge of the tape.


Seven inch coil detects pipes in walls, beams in concrete and small metal objects such as keys, and warches. Assembly steps are as follows:
1. Make \(7^{\prime \prime}\) O.D., \(61 / 4^{\prime \prime}\) I.D. \(\times 11 / 2^{\prime \prime}\) cylindrical cǫil form by iig sawing out of solid wood, or of glued up sheets of plywood.
2. Drill holes for terminal strip as for large coil.
3. Install \(1 / 2 \times 61 / 4^{\prime \prime}\) wood handle.
4. Wind \(1 / 2 \mathrm{lb}\). \# 28 Nyclad wire, 473 furns total, same way as large coil. Only first furn each layer.
5. Check balance with bridge circuit at least 3 feet from any metal object.
6. To use with other coils, add about 10 furns and trim for balance at same control settings.

Now press the tape down around the terminals so that none is on or above the top surface of the \(8-32\) nuts. Clip off all loose threads from the tape edges and apply a heavy coat of resin to the entire surface of the tape. Work it in thoroughly with the brush, making sure all holes and seams are filled. If there are any large holes, fill with small threads of fiber glass mixed with resin. Wipe the threads of the \(8-32\) screws and the upper face of the nuts with a wet cloth to remove excess resin. Hang the coil in a warm dry place, and wash tools and hands with hot water and soap.

The Resin Will Harden in 24 hours. File all rough spots and connect the cable and strain relief plate. Now mix about 2 oz . of resin with the required amount of activator and stir in about \(1 / 2\) teaspoonful of white coloring for the second coat. Dry 24 hours and apply a third coat consisting of 1 oz . of resin, the specified amount of activator, and \(1 / 2\) teaspoonful of color.

Use a small amount of the resin to fill in all slots in the corners of the aluminum case for waterproofing. After drying, file smooth and cover with grey paint.
Fasten the Completed Search Coil to the lamp cord cable with four \(15-\mathrm{in}\). supporting cords (Fig. 8B), allowing slack to avoid strain
materials list metal locater coils LARGE COIL
\begin{tabular}{|c|c|}
\hline & estription \\
\hline Amt. & Size and Destription \\
\hline 1 & \(1 / 4 \times 11 / 8 \times 70^{\prime \prime}\) wood strip or \(18 \times 27^{\prime \prime}\) wood quilting hoop (Sears Roebuck Cat. No. 25 K 5510 ) \\
\hline 1 & \(1 / 4 \times 1 / 8 \times 5^{\prime \prime}\) wood strip \\
\hline 1 pc . & Bakelite, \(1 / 16 \times 11 / 8 \times 2^{\prime \prime}\) \\
\hline 1 pe . & Bakelite, \(3 / 4 \times 3\) \\
\hline 1 & Fiberplass lape kit (Sears Roebuck Cat. No. 6K5787) \\
\hline 1 nkg . & White resin color (Sears Roebuck Cat. No. 6K5764) \\
\hline 3 sets & Wire footane markers, 1-33; 34-66; 67-99. (Newark \#30F200, \#30F201 and \#30F202) \\
\hline 1 lb . & \#26 Nyelad magnet wire, Belden HNC 8079 (1260 ft.) Allied \#48T092 \\
\hline 100 & \#18 lamp cord, Consolidated type POSJ (Allied \#48T760) \\
\hline 1 & 16-02. can CRC-2.26 (Northern Mining Equipment Co., Box 836, Hibbing. Minn.) For waterproofing headphones and control box. \\
\hline & \(7 \cdot 1 \mathrm{~N} . \mathrm{COIL}\) \\
\hline 1 & circular wooden or plastic coll form approx. \(7^{\prime \prime}=0.0\)., \(61 / 4^{\prime \prime} 1.0 ., x 11 / 2^{\prime \prime}\) \\
\hline \(1 / 2 \mathrm{lb}\). & 1/2 \(\times 28\) / " \({ }^{\text {" }}\) wood dowel to fit above as handle. \\
\hline & 28 Nytiad mannet wire. Belden type HNC, 995', (Allied Radio \#48 T0 43) \\
\hline \(1^{1 / 2}\) & Rubber covered lamp cord \\
\hline 1 & Bakelite strip, \(5 / 8 \times 11 / 2^{\prime \prime}\) \\
\hline 2 & Bakelite strip 7/8 \(\times 1 / 8^{\prime \prime}\) \\
\hline 2 & \(6.32 \times 3 / 4^{\prime \prime}\) fh machine serews, nuts and washers for terminals \\
\hline Misc. & Masking tape, plastic electrical tape, wood strews, appliance piug. \\
\hline & SMALL COIL \\
\hline 1 & 8 oz. plastic tumbler, \(2^{1} 1 / 32^{\prime \prime}\) at top, \(2^{11} / 32^{\prime \prime} 0.0\). at base. Konite \#209, Plastles Manufacturing \(\mathrm{Co}_{\text {. }}\), 2700 S. Westmoreland. Dallas 33. Tex. Available \\
\hline \(675^{\prime \prime}\) & \#29 Formvar Magnet Wire (Allied Radlo \#48T144) \\
\hline Misc. & male appliance pluy, lamp cord for cable, plastic elec. trical tape \\
\hline
\end{tabular}
on the terminal strip. Apply markers to the cable every foot for measuring depth. The reel on which the cord is supplied can be used in the boat, provided you add a grommet to a hole near the hub and feed about 4 ft . of the inner end of the cable through.

Operating Adjustments. With the search coil and headphones connected, set R3 for minimum output. Then balance the bridge for least signal. This balance adjustment is a step-by-step process. Alternately adjust the two balance controls for minimum output until the 1000 -cycle note can not be heard. Practice until you can balance in five steps or less.

Then adjust R3 slowly until you hear a distinct high-pitched note. This is a harmonic of the 1000 -cycle note. Back R3 down until this note is barely noticeable. When you are approaching balance, the harmonic becomes predominant; when balance is reached, the 1000 -cycle note will not be heard-only the harmonic will come through. Control R3 should now be near its mid-point.
If you have an oscilloscope, check for a 5 -volt peak-to-peak signal across the bridge input. Then unbalance the bridge by rotating one of the balance controls off toward one end. The core of L2 is now adjusted for maximum output.
With the search coil in water and no metal nearby, adjust C6 until the balance point on R18 falls near the center of rotation. Also
check that the second balance control (R17) is near center. When the search coil is removed from the water, the balance controls will need to be readjusted, but the balance points should not be too near one end of their rotation. If R17 is too far off, trim by changing the value of R14. Normally this resistor will be near \(11 / 2\) megohms. If you plan to use the metal locator on dry land, balance adjustments must be made with the coil in air and no metal nearby.

Check the adjustments again, then lock L2 adjustment screw with a dab of cement.

Operation in Water. For best results with any metal locator, it is necessary to practice adjustment and search procedure. Improper use can cut your range in half.

This metal locator was designed to be used in boats. Or a diver can manipulate the search coil; while a helper operates the control box above. The large oval loop produces a field that combines the advantages of larger and smaller diameter loops. It will detect objects ranging from a camera to an outboard motor and-at close range-coins and keys. If there are strong water currents, tie small bags of sand to the loop frame for additional weight.
With the control box on a shoulder strap, one hand is free to manipulate the search coil while the other adjusts the controls. Lower the coil into the water, and while well away from all metal objects, adjust the two balance controls for minimum earphone signal. Then set your sensitivity control so the harmonic and amplifier noise are clearly but not loudly heard. If the sound is too loud, your car will not readily detect the 1000 -cycle note when you approach metal.
Lower the search coil to the bottom, then raise it slightly, the distance depending on the size of the lost object. For example, if you are seeking a small camera, the search coil should be about 1 ft . from bottom. For outboard motors, about 3 ft . would be right. As you search, frequently drop the coil until it hits bottom, taking note of your cable depth markers, since there may be deep drop-offs on the bottom.

If there is a considerable difference between air and water temperature, you will have to readjust your balance controls (mostly R17) during the first few minutes, because temperature changes affect the search coil resistance. When the coil stabilizes at water temperature, only an occasional re-balance will be needed.

As soon as you suddenly hear the 1000 cycle note, it is likely the search coil is near metal. Move the coil back and forth over that spot to get an idea of how large the object is, and where the signal is maximum. Raise the coil, and mark the find with an anchor and marker float to guide diving or grappling. Many small ferrous objects can be pulled up


Small cail lacates nails and tacks in walls and tires. A \(1 / 4^{\prime \prime}\) brad can be detected at 2 inches.
1. Wind coil on 8 -oz plastic tumbler available at hardware stores. Diameter is approx. 2 19/32".
2. Drill lateral holes through tumbler and faed stiff wires through as guides for winding.
3. Wind about 950 turns \#29 Formvar Magnet wire, and trim for balance setting to match other colls.
4. Cover with plastic electrical tape.
with high powered magnets.
The detector will also indicate the kind of metal. Small ferrous objects will cause the bridge to unbalance in one direction, while non-ferrous objects will cause an opposite unbalance. A difficulty arises because objects the size of the coil and larger cause just the opposite effect. By first estimating size of the object, you can judge the type of metal.

After locating a metal object, readjust R17 for an approximate null. Then adjust R18 for null, noting which way it has to be rotated from its original setting. It is labeled to show the direction of rotation for small items; for large objects, this indication will be reversed.
- Craft Print No. 341 in enlarged size for building the underwater metal locator is available at \(\$ 3\). Order by print number. To avoid possible loss of coin or currency in the mail, we suggest you remit by check or money order (no CODs or stamps) to Craft Print Div., Scrence and Mechanics, 505 Park Ave., New York 22, N. Y. Please allow three 10 four weeks for delivery. Special quantity discount! If you order two or more craft prints (this or any other print), you may deduct \(25 \%\) from the regular price of each print.

\section*{Shield Simplifies Soldering}

Soldering in crowded wiring of a circuit is simplified if the upper portion of a waxed milk carton is used as
 a shield. This helps avoid touching adjacent parts with the hot soldering iron or gun tip, helps you concentrate on the work, and often catches excess drops of solder.-Jorn A. Comstock.

\title{
Trouble-Shooting Interference
}


How to discover the source and eliminate noise in a radio or amplifier

\author{
By FORREST H. FRANTZ, Sr.
}

PUT a new LP on the phono and slump into the easy chair. The music is fine, but what's that d-hum? The disturbing sizzle of a TV, the gasping of a hoarse, distorted radio or TV and the whine of a humming radio are other manifestations of interference. Fortunately, most of these troubles are easily recognized and fixed.

We usually differentiate interference as either hum, buzz, squeal, noise, distortion or station interference. Sometimes these are due to faults in the gear, sometimes to external sources. Frequent internal causes are: open, shorted or leaky capacitors, intermittent connections, intermittent short circuits, defective tubes and dampness. The antenna-ground system is also a frequent trouble spot. Externally caused disturbance is often traced to switches, thermostats, advertising signs, motors, radio stations and high voltage lines.
Let us look, first, at hi-fi audio amplifiers, remembering that this discussion is applicable also to the AF section of radios. Then we will cover radios specifically.


Hum introduced in first stage is amplified more than hum introduced in subsequent stages.

Audio Amplifiers. Amplifiers may exhibit interference in the form of hum, buzz, squeal, noise or distortion.
Hum in an amplifier is usually caused by insufficient shielding of the amplifier input circuit. The various stages of an amplifier have individual gains, which multiply as shown in Figure 1. The first stage usually has the highest gain. Thus, the gain from the first stage to the loudspeaker is much greater than the gain from any succeeding stage to the loudspeaker. If even a small portion of an amplifier input lead is unshielded, it acts as a capacitor to the ac line though it may be many feet away. A small amount of alternat-
ing current can therefore feed into the amplifier. The high gain of the amplifier multiplies this minute voltage into a sizeable signal at the loudspeaker.
Hum due to poor input shielding is easily recognized, since the loudness of the hum will decrease as the volume control setting is decreased. There are several steps to pinpointing and curing this. First, dress the input lead close to the chassis. The input lead can be traced from the input connector and usually goes to the high volume control terminal (possibly through a capacitor) as shown in Figure 2. The center terminal of the volume control goes to the grid of the input tube (possibly through a capacitor). In some amplifiers, a preamp stage precedes the volume control. If the input tube is glass, a shield may cure hum. Next, check the shell to chassis ground connection of the input connector. Then check the connection from the external input plug to the braided shield which encircles the unit's input lead (Figure 3). An open can cause hum.

Sometimes, in cheap construction, unshielded leads are used, and should be replaced. An open circuit from shield to ground or at the chassis connector results in loss of gain because the shield is frequently the chassis ground return conductor. Finally, check the ground connection at the remote input device and look for short lengths of


Leads likely to pick up hum. Remedy is to substitute shielded cable, dressed close to chassis.

3. A broken shield or disconnection from plug ground or a faulty or open input jack can cause hum pickup. 4. Filter capacitor (C1), which if open, causes hum in amplifier power supply. Leaky power supply output filier capacitor (C2) will cause hum or squeal.
input lead which may be unshielded.
Hum which occurs at all volume settings is often due to defective filter capacitors in the amplifier power supply, as shown in Figure 4. (The rectifier tube is connected to the power transformer and the high voltage electrolytic capacitors.) To test the filtering, bridge a 10 mfd . electrolytic (watch the polarity) across C1. The voltage rating should be equal to or greater than that of C1. If hum decreases, you're on the right track. Disconnect C 1 , and connect a replacement capacitor of the same or greater voltage and the same capacity in the circuit. If the hum is substantially reduced, replace Cl permanently. Otherwise, connect the original Cl back into the circuit, and bolster the filtering action with the 10 mfd . capacitor that scored the original improvement. If this isn't enough, try a 40 mfd . capacitor of adequate voltage rating across C2.

Caution! Don't work on an amplifier that has been used in the last few minutes-wait until capacitors discharge.

If you still haven't cured the hum, check for cathode to heater leakage in tubes, poor connections to chassis ground within the amplifier, and open or partially open capacitors elsewhere in the circuit (can usually be found by bridging with another capacitor).

Squeal in amplifiers may be due to open filter or bypass capacitors, which can be traced by employing the capacitor bridging technique described previously. Another cause of squeal is feedback caused by a high level signal lead being too close to an early amplifier stage lead-shorten the lead and dress it close to the chassis.

Noise may be due to a bad volume control, a microphonic, shorted or intermittent tube (which can often be located by tapping with a pencil eraser) or a rubbing loudspeaker voice coil (most readily checked by substitution of another speaker). Noise can also be caused by an intermittent capacitor (thump and jiggle the suspect), by poor connections which may be loose or intermittently shorted,
by intermittently shorting output or interstage transformer windings or by arcs across rectifier or output tube sockets (usually indicated by a charred section of tube socket or a visible arc during operation).
Distortion in amplifiers is usually caused by leaky coupling capacitors ( C 4 in Figure 5). Coupling capacitors may be checked by substitution, but this requires disconnecting one end of the original capacitor. Other sources


Plate bypass capacitors (C3 and C5) or coupling copacitor (C4) if leaky can cause distortion.
of distortion are leaky power supply output filter capacitors (C2 in Figure 4) and leaky bypass capacitors. Plate bypass capacitors (C3 and C5 in Figure 5) are likely offenders. In each of these cases, one end of the original capacitor must be disconnected before substitution of a similar capacitor is attempted. Another frequent cause of distortion in amplifiers is a gassy tube. Output tubes are the usual offenders.
Radios. Radios are subject to all the amplifier disturbances described, and the same solutions apply. In addition to amplifier troubles there are other possibilities.

Hum caused by some strong local radio station can usually be cured by connecting a 0.05 mfd ., 600 v . capacitor from one side of the ac line to chassis ground as shown in Figure 6 A . If the set is ac-dc (no power transformer), the capacitor should be connected from the set side of the switch to the opposite side of the line as shown in Figure 6B.

Buzzing is due to external sources such as neon signs, motors, or high voltage lines.

Squeals may be caused by any of the things already discussed under audio amplifiers or may be due to open bypass capacitors, long unshielded RF or IF leads or other causes. Long leads on IF transformers are frequent causes of squealing.

Noise may be due to internal or external trouble. If the set uses an external antenna,
 Suppressing a strong local station by connecting . 05 mfd capacitor from one side of line to chassis ground for ac radio (a) and from set side of the switch to opposite side of line for AC-DC radio (b).


Suppressing on unwanted statian with a wave trap, a funed circuit across the antenna ground perminals (a) ar in series with the antenna terminal (b).
disconnect it, and short the antenna terminal to ground. If the noise persists, it's in the receiver. Arc in the power supply, intermittent connections almost anywhere in the set or defective tubes are possibilities. Next, check the antenna by disconnecting it and connecting 20 ft . of wire to the antenna terminal. Noise in an antenna may be due to poor or corroded connections at the antenna, lightning arrestor, feed-in to the building, a break in the lead-in under the insulation or to the antenna or lead-in contacting metal such as the storm gutter.
Assuming noise to be external to the receiver, a capacitor connected as shown in Figure 6A or 6B may be helpful if your receiver doesn't already have one. If this doesn't help, try tracking down the external causes
which were mentioned early in this article. For example, if noise occurs around meal times, it may be an electric stove or other appliance. Or, say the noise occurs only in winter-could be the thermostat.
The type of noise your receiver picks up is also a clue to its origin. Switches, relays, thermostats and poor electrical connections cause intermittent noise. Motors and industrial and medical electronic equipment produce a buzz or whine in nearby radios. High voltage lines produce a hum or buzz with a super-imposed crackle in radios. High voltage line noise is continuous, and the crackling is worse in damp weather.
A battery receiver, that has automatic volume control (which you must disconnect for this purpose) and a directional loop antenna, is helpful in tracking down noise.
When the source of noise is located, a commercial filter installed at the source of the noise will usually cure the trouble. These filters usually consist of capacitors or capacitors and inductors.

Distortion is usually due to AF section trouble. Refer to the previous discussion of distortion in connection with audio amplifiers.
An interfering radio station can be eliminated by a wave trap, a tuned circuit across the antenna-ground terminals (Figure 7A) or in series with the antenna terminal (Figure 7B) tuned to the frequency of the interfering station.


\section*{Wireless Remote TV Sound}

Easily constructed unit permits private listening

\author{
By W. F. GEPHART
}


With TV speaker silent, the sound is picked up remotely by an earphone-equipped transistor radio.

EVER wish the TV set had earphones when the kids were watching a Western, or when someone is trying to sleep in the next room? It can be done, but usually requires a long cord stretching across the room to the earphones or a small speaker. It also requires an earphone, or extra speaker, and limits the movement of the listener.

With this little transistorized oscillator, the main TV speaker can be cut off, and the sound picked up anywhere in the room with an ordinary radio. If a transistor radio is used, the earphone can be used for complete privacy or the speaker used for listening in a small area. Even with an ac-dc radio, the sound can be cut down so that it doesn't bother others.

The unit, similar to a wireless phono oscillator, is mounted on the back of the TV set, and is turned on by a switch accessible at the top of the back of the cabinet. This switch also connects the TV sound to the unit, and
cuts the TV speaker out.
The circuit (Fig. 4) consists of a transistor oscillator (TR1), operating in the broadcast band, which can be tuned to a blank spot on the radio dial. It also has an AF transistor modulator (TR2), and an optional power supply. It can be built for less than \(\$ 10\) without the power supply, and for about \(\$ 15\) with the power supply.

Through the use of an adapter for the TV audio tube, connections to the TV set can be made without modifying the TV set wiring. In some cases power from the TV set can be picked up for the unit, and in other cases, the standard 9 -volt transistor battery is used. Since only 5 ma is drawn by the unit, a battery will last from several months to a year, depending on usage.

Circuitry. There are two general types of circuitry used in TV audio output stages, as explained in Fig. 3. The unit will work with any of these circuits, but battery power must
be used if the TV set uses a circuit similar to 3 C , or if the cathode voltage in circuits 3 A or 3B is less than 13.5 volts. To determine the circuitry used and the cathode voltage, secure the adapter mentioned in the materials list, and solder the leads together.

Plug the adapter into the audio tube socket, and the audio tube into the adapter. (Typical audio tubes in TV sets are 5BQ5, 6AQ5, \(6 \mathrm{BQ} 5,6 \mathrm{~V} 6\), etc. Usually the tube location guide pasted on the back or inside the set will tell which is the audio output tube).

With the set on, measure the voltage between the cathode pin on the adapter and the set chassis. If it is relatively low ( 25 volts or less), the circuitry is probably similar to Fig. 3A or 3B and a self-powered oscillator can be used. If the voltage is relatively high ( 90 volts or more), the circuitry is probably similar to Fig. 3C, and a battery supply must be used for the oscillator. Even if Fig. 3A or 3B circuitry is used, a battery supply must be used if the cathode voltage is less than 13.5 volts.

Construction. Most of the parts are mounted on a \(2 \times 2\)-in. piece of Bakelite. The author used a surplus terminal board, but a similar mounting can be made as shown in Fig. 7. This board is wired first, and then mounted in the box with either a battery or power supply, as shown in Fig. 8.

Since this unit must work with various TV sets, some modifications may have to be made. The volume control (R1) can be eliminated in most cases, and in some cases it loads the oscillator enough to reduce the output depending on the size of the grid resistor in the TV set. Obviously, R4 is not needed



The audio fube is plugged into adapter from which cable leads to unit attached at top of TV cabinet.


This type is also found as half of a push-pull output circuit. Cathode voltages ( \(E_{z}\) ) vary from about 7 to 172 volts, depending on tube and manufacturer. Cathode resistors ( \(R_{\mathrm{z}}\) ) vary from about 200 to 560 ohms, depending on tube and manufacturer.
This is essentially the same as type \(A\), except that the volume control ( \(R_{g}\) ) is in this stage. Cathode voltages ( \(E_{k}\) ) vary from about 5 to 16.5 volts, depending on tube and manufacturer. Cathode resistors ( \(\mathrm{R}_{\mathrm{k}}\) ) vary from about 82 to 680 ohms, depending on tube and manufacturer.
Grid voltages ( \(E_{\xi}\) ) run from 120 to 135 volts (positive), depending on fube and manufacturer. Cathade valtages ( \(\mathrm{E}_{\mathrm{k}}\) ) run from 135 to 150 volts (pasitive), depending on fube and manufacturer. (These cambinations give a negative grid bias of about 15 volts.)
Typical Audio Output Tubes 5AQ5 68Q5 12C5 6AQ5 6DG6 12CU5 6 V 6

Types of Output Circuits

when battery power is used.
A small loopstick is used for L1, but larger units give better range. The one shown was later replaced with a larger one, and C5 changed to a \(280-\mathrm{mmf}\) trimmer. Small loopsticks, such as the Superex "Ferri-loopstick" (shown in the pictures), "Vari-Loopstick," and Miller \#2002 or \#2007 are compact and adjustable, but have limited range. Larger units, such as the Superex " 7 -in. Loopstick," and Miller \#705 and \#2000 take more room and will require an adjustable trimmer for C5, but will give greater range. These units will also permit the addition of a length of wire for an antenna without appreciably al-
tering the oscillator frequency. Where space is available, the larger units are recommended.

Adjustments. When the box is in place and connected, the only adjustment required is the frequency setting. Turn the TV set on, and set to a channel. When it has warmed up and the sound is good, switch to a vacant channel.

Place a small radio on the TV set, and turn the knob on the unit to the REMOTE position. Gradually tune the radio through the broadcast band until you hear a whistle. Tune the radio to the center of the whistle, and then switch the unit to LOCAL to verify


Interior view of unit showing power supply, cord, and adapter. When battery is used, it is placed where choke and capacitors are located. Close-up of terminal board showing resistors and capacitors.

that the whistle is from the unit, as indicated by the whistle stopping.

If the output seems weak, and appears above 1100 kc on the radio dial, retune for half the frequency shown. This is to make sure that you are not picking up the 2nd harmonic of the oscillator. If, with a weak signal, the radio is tuned below 1100 kc , raise the oscillator frequency by moving the slug farther out of the coil or loosening the trimmer condenser, and make the test to be sure you are tuned to the fundamental frequency.

Once the proper frequency is found, turn the unit to LOCAL, and turn the radio volume all the way up without moving the dial setting. Make sure there are no stations on the frequency that will interfere with operation. This test should be made at night when reception is best.

If the oscillator is not tuned to a blank spot on the dial, its frequency can be changed by adjusting the slug in the coil (L1) on small units, or adjusting the trimmer (C5) on large coils. Moving the slug farther in the coil (or closing the trimmer) decreases frequency, and the reverse increases it.

Once the oscillator has been set to a blank spot on the dial, turn the TV set to a channel, adjust the sound to the desired level, and turn
the unit on REMOTE. You should then pick up the TV sound on the radio, and can adjust the radio volume as desired. If, even at low radio volume and proper tuning, the sound is distorted, potentiometer R1 will have to be included, so that the sound input to the unit can be reduced.

You will find that, as you move the radio away from the TV set, the signal weakens. This can be minimized by attaching a 6- or 8 -ft. piece of wire to the loopstick antenna post. If a small loopstick is used, this will change the frequency, so the radio or oscillator will have to be retuned. With transistor radios, position of the radio will also have an effect on signal strength as you move away from the TV set.
By eliminating C 1 , and using a high-gain radio, this unit can sometimes be of help to those with impaired hearing. It is often necessary for them to turn the TV sound up to a point uncomfortable for others. In some cases (where Cl is omitted) the TV sound can be adjusted to a comfortable level for all, the unit turned on, and the hard-of-hearing person can listen on an earphone-equipped radio set to the desired volume. With C1 omitted, the TV speaker remains in operation, even with the unit set on REMOTE.

\section*{HAM RADIO ANAGRAM}

IF AMATEUR radio is your hobby, you will have loads of fun working this puzzle. Those in other branches of electronics will have almost as much fun trying to figure
out the lingo that isn't so familiar to them.
After you think you have all the correct answers, turn to page 158 for the solution.

\section*{ACROSS:}
1. Radio-frequency -ffect
4. 8 kc. is the second -........ - of 4 kc.
10. No
11. Same as \#2 down
12. Positive terminal of grid bias voliage source
13. Famed manufacturer of lectronics qear (abbr.)
15. Chanqeable current (abbr.)
16. Positive grid of a vacuum tube (abbr.)
18. Wire tiedown point
20. The maximum inpul .... . permitted for operating a transmitter with \(a\) novice class license is 75 watts
23. Short for crystal
24. Voltage (abbr.)
25. Capacitance (abbr.)
26. Power output (abbr.)
27. Are you troubled by atmospherics?
30. Tube and associated components
33. Many beginners learn to send code with one
34. Current used
35. Federal radio communications regulating agency (abbr.)
37. Transmitter stage (abbr.)
38. You are QRMing
39. Not a regular wire circuit (abbr.)
40. Wife
41. Type of national defense (abbr.)
42. Abbreviation for \# 51 down
43. Quadrature-phase subcarrior signal (abbr.)
46. Current that is not undecided which way to flow (abbr.)
47. Going out of the notwork
49. . - hams should join the ARRL
51. Bunch of inter. connected relay stations
52. Letter symbol for power
53. The trength of your signal is .....
54. Intentional loss
56. Send your information "QNC"
58. Type of magnet (abbr.)
59. - . - directional antennas radiate equally woll in all directions
61. Cathode resistor (abbr.)
62. Radiotelephone
63. Class of amateur radio license

DOWN:
1. Wave reflection phenomenon from ionosphere
2. One thousand watts (abbr.)
3. Broken or open circuit connection (abbr.)
5. Volume compensating circuil (abbr.)
6. Antenna support
7. Not fer away
8. Current in vacuum tube cathode circuit (abbr.)
9. What's your = - sign?
14. Switch (abbr.)
17. Deck switch
19. Type of earthly radio wave
21. Operator

22. Resistor voltage drop (abbr.)
23. Short for something that generates and - mits
27. Means network isn't busy
28. Major broadcasting network (abbr.)
29. Odor associated with electrical discharge iǹ air
30. Short for says
31. Magnetically induced circulating current
32. K-King, L-Lewis, M-•••
36. Could
37. Modulated continuous waves (abbr.)
38. Signal concerning network communications
39. Circuit etched on wafer (abbr.)
41. Series-tuned Colpitts oscillator
43. Stop transmitting
44. Not a distant oscillator (abbr.)
45. Ham's lair
46. Received
48. Type of transistor (abbr.)
50. Light source
51. Inert gas
55. It is a - - to say amateur operators cren't of great help in time of a national emergency
56. Shall I send a series of VVV
............?
57. How many telegrams have you received?
60. Objective case of pronoun 1, or the one who wrote this puzale!

\title{
A Handy Home Appliance Tester
}

\section*{\(\$ 6.50\) electronic box will check out electrical units up to 15 amps at 125VAC By JAMES ROBERT SQUIRES}

APPLIANCE testing can be as simple as you make it. The little unit shown in Fig. 1, simplicity itself, can be used as the basic tool for a lot of tests that locate many appliance faults.

Most modern appliances provide a product name plate giving either total current drawn by the unit or total power consumed in its normal operation. New appliances will draw current in the general range of the same plate value. Older appliances usually draw less current as the heating elements age. Older appliances that require longer heating times or in general do not do the job in the time allotted are wasting electricity. The location and repair of these faulty units will soon pay for the slight expense of making this tester.
It will cost approximately \(\$ 6.50\) to build this unit. With it you can test all electrical appliances up to 15 amps at 125 vac with safety. As you know, these little boxes can attract all kinds of little gimmicks such as test points, and extra switches, in a hurry. Since these add to cost and construction time, they were not included.

Construction of the appliance tester is straightforward (Fig. 2) and it can be done in a few evenings. Close the aluminum minibox and fold a piece of white paper tightly over the flanged cover. Anchor the paper with cellulose tape. Also allow the paper to cover one end of the box. Now draw a center line on the paper as shown in Fig. 3, then locate the five cross points on the paper as indicated.
The SPDT switch requires a \(15 / 32\)-in. hole, the neon light grommet one of \(5 / 18\)-in. diameter. The \(2-\mathrm{in}\). circular opening for the \(0-15\) ammeter is best cut with a chassis punch. Other useful ways to cut the hole are satisfactory, providing they leave a clean hole and
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{MATERIALS LIST-HOME APPLIANCE TESTER} \\
\hline No. Req. & Description \\
\hline 1 & 0.15 amp ammeter (Shurite 8508; Burstein-Applebee 198289) \\
\hline 1 & double fuse plug (EImenco; Allied 52N648) \\
\hline 1 & aluminum Minibox (Bud CU3006A; Allied 80P366) \\
\hline 2 & 15.amp fuse (Buss ABCl5; Allied 538571) \\
\hline 1 & \(56 \mathrm{~K}, 1 / \mathrm{R} \cdot \mathrm{w}\). resistor (Allied 1MM000) \\
\hline 1 & SPDT \(_{34 \text { B796) }}\) switch (Cutler-Hammer 7502 K 13 ; Allied \\
\hline 1 & 1/1s.w. neon lamp (GE NE2E; Newark 25F027) \\
\hline 2 & socket (Cinch-Jones 2R2; Allied 40H830) \\
\hline 1 & ac plug (Allied 52N641) \\
\hline 6 ft . & 2-conductor power cord (Belden 8472; 47T406) \\
\hline & The above parts can be purchased from Burstein- \\
\hline & Applebee, 1012-14 McGee St., Kansas City 6, Mo. \\
\hline & Allied Radio Corp., 100 N. Western Ave., Chicago 80, \\
\hline & III., and Newark Electronics Corp., 223 W. Madison St., \\
\hline & Chicago 6, III. \\
\hline
\end{tabular}


Just plug your appliance into the tester. An 8-ampere reading on the dial indicates normal operation of the iron, but an intetmittent movement of the needle would indicate a faulty contact in the cord connector.
do not mar the shiny aluminum face.
You will need two rectangular holes for the Cinch-Jones ac sockets. The simplest way I have found to start the rectangular hole is to drill the two \(1 / 4-\mathrm{in}\). holes in two places as indicated in Fig. 3. Then, using the socket as a pattern, lay out the rectangle on the paper. Now, with a small square file and the socket as a fitting template, file the rectangle to size. Again with the socket as pattern, lay out the mounting holes and drill them. These mounting holes were not laid out before, so that any error made in drilling or filing the rectangular holes would not be added to the position of the predrilled mounting holes. Drill a \(1 / 2-\mathrm{in}\). hole for the power cord grommet.

Wrap one of the neon lamp pigtails around the pigtail of the 56 K resistor and solder the joint. Wrap the other neon pigtail around one end of a \(5-\mathrm{in}\). piece of No. 22 shielded wire-then solder. Slip a 2 -in. piece of sleeving over the joint and butt up against the glass of the NE2E bulb.

Remove any of the white layout paper and


Interior view of tester showing parts placement.

cellulose tape left on the chassis. Insert the \(3 / 8-\mathrm{in}\). neon grommet in its hole, moisten the neon tube glass with water, and slip into the grommet. Allow about \(1 / 4-\) in. of neon tube to project above the chassis.

Mount the Shurite meter, taking care to square and center the meter face with the Minibox sides. Now mount the SPDT switch and the two Cinch-Jones sockets. Strip 6 in. of outer rubber protective insulation from the power cord. Dampen the outer rubber of the power cord, insert the power grommet in its hole, then slip the power cord about \(3 / 4-\mathrm{in}\). into the grommet. A tight fit here assures a firm hold of the power cord at the grommet.

Disassemble the double-fused plug and, with a small round file, file the edges to permit the plug cover to close over the power cord. Strip, solder, and attach the wires to the plug. Reassemble the plug and insert two Buss ABC15 (3AB) fuses into the plug.

Wiring the Tester. It is always good practice to tin stranded wires before using the solderless connector crimp tool. Be certain to use internal lock-tight washers under every screw and nut used in the circuit. With exception of the neon circuit, work with \#16 stranded wire throughout. The long length
of power cord wire inside the box will allow servicing of the instrument.
Attach a solderless connector to one wire of the power cord pair and connect it to the center screw terminal of the SPDT switch, as in Figs. 2 and 4. Connect the other wire of the power cord pair to the left terminal, as viewed from the rear of the appliance jack. Also connect the wire from the neon pigtail to this terminal and solder. Connect a length of wire from the right screw terminal of the switch to the right terminal of the meter.

Using solderless terminals or solder where necessary, connect a wire from the left side of the test jack to the left side of the ammeter. On this same terminal of the meter, connect a wire to the left screw terminal of the SPDT switch. Also connect the pigtail of the 56 K resistor to this switch terminal. Complete wiring of the tester with the connection of the right terminal of the test jack to the right terminal of the appliance jack. Using a small piece of \#16 wire, short the two male pins of the ac plug together at the terminals to form the shorting plug.

A word of caution before continuing. This tester might well be constructed from assorted parts lying around the work bench.


\section*{4 SCHEMATIC}

However, operating ratings for all components used in the model are 15 amps at 125 vac. Any random bench parts used should equal or exceed this rating. As an example, table lamp zip cord should not be used. For your own safety, be very sure to use the components that meet the ratings given above.
Using the Appliance Tester. It is only necessary to assume or measure the approximate value of the ac line voltage applied to the tester. That is, you must decide that input voltage is nearest to 100 volt, 113 volt, or 125 volt. When the appliance is turned on, the \(0-15\) ac ammeter will indicate a current flow.
Chart No. 1 shows the power consumed for a choice of one of the three approximate line voltages. This chart plots meter current in amperes versus power consumed at the appliance jack in watts.
As an example, assume you have selected the 113 -vac house voltage as being the closest to your own voltage. With the appliance plugged into the tester, you then read 10 amps on the meter. By sliding your finger up to the 10-amp line on the chart to the point where it crosses the 113 -vac curve, you have found the power consumed by the appliance. It is indicated to the left of the chart on the horizontal line which also crosses the 113 -vac
curve. The Shurite ammeter movement is accurate to within \(5 \%\) and is close enough for all measurements used here.

Plug the appliance to be tested into the ac receptacle marked appliance jack. Be certain that a shorted ac plug is plugged into the receptacle marked test jack. The SPDT switch mounted under the meter is the on-off meter selector switch. In meter bypass position, the meter is not in the ac circuit. In the meter position, all appliance current will flow through the meter. The meter bypass is used to prevent damage to the meter when appliances that may have a short are tested. It has another use to be mentioned in a moment.
Safety Feafures. Additional trust may be placed in the tester because of many safety features built into the unit. Both sides of the ac line are fused. This prevents excessive current in the event one side of the line is shorted to a good ground such as a water pipe. The fuses are 3 AB medium time lag, steatite-case, heavy-duty fuses. They offer more protection in the event of direct shorts to fuse holders in the ac plug. Fuses are removed from the double fuse plug by pushing them out through a small hole to the rear of the plug.

With the meter selector switch in either


METER CURRENT IN AC AMPERES
meter bypass or meter in position, the NE2E glows brightly. The Shurite model 850 plastic meter case enables the operator to see the neon glow from many angles. When working in dark corners, the neon provides enough light to illuminate the meter face. The test jack shorting plug need not be in its socket for the neon power on light to warn of ac voltage on. The tester can be used either horizontally or vertically as it is convenient. The power cord is No. 16 heavy duty 15 amp . 125 -volt cord, so it should not heat under these maximum load conditions.

To measure appliance currents less than 3 ac amps with more accuracy than possible with the \(0-15\) amp meter movement, the test jack is used. Simply throw the meter selector switch to meter bypass, remove the male shorting plug, and plug an ac ammeter of your choice in the test jack. With an 0 to 3 ac ammeter plugged in, all appliances drawing more than 350 watts should not be checked. Line voltages supplied by the power company vary during the day and night. Often the complaint that an appliance does not get hot enough for the evening meal, a fry pan for example, may be traced to a lower ac line voltage to the appliance during this peak


AC RMS VOLTS AT APPLIANCE JACK
load time. The tester has provisions to test appliances under these reduced voltage conditions. Again, the shorting plug is removed and an ordinary table lamp plugged in the test jack.

Chart No. 2 gives the reduced voltage at the appliance jack when using the various wattage bulbs in the lamp socket. The values given are approximate and are only for reference. The range of possible loads is wide and actual ac rms. voltage at the appliance jack should be found by experimentation. The chart shows that the reduced-voltage feature is most useful for small loads in the 50- to 150watt range. This includes radios, hi fi's, amplifiers, small industrial systems, and P.A. systems.

Chart No. 2 also shows that for very large loads, 400 watts or greater, the ac voltage at the appliance jack will be very small, on the order of 20 volts or less. Electrical devices using timers such as toasters require careful checks to assure that all components are working.

In conclusion, it cannot be stated too often: Currents and voltages used in this appliance tester are lethal, and caution is the byword at all times.

\section*{The Torpedo}

A portable capsule radio the young experimenter can build


\section*{By HOMER L. DAVIDSON}

THE Torpedo consists of just 10 small components soldered together and sealed in plastic. Local broadcast stations are heard across the band with plenty of volume. A phono male and female plug combination forms a simple on-off switch. Simply clip the capsule radio to a metal object and you're in business. The cost is less than \(\$ 5\), including the earphone.

The antenna coil is a ferrite-core type with a .000330 mfd fixed capacitor to tune the broadcast band. By removing the threads


The battery and plug fit together and comprise the switch that energizes the radio.
from the core shaft, the coil can be pushed in and out, selecting your favorite station.

A fixed crystal rectifies the RF signal and also couples the signal to the base of the first transistor. The emitter terminal of TR1 is grounded. Capacitor C2 couples the audio signal to the base of TR2 for greater amplification. R1 serves as the plate load for the collector circuit of TR1. Any 1000- to \(3000-\) ohm earphone can be used in the collector circuit of TR2. SW1 is a female phone socket with the male jack fastened to the small battery.

Construction. Take a solid piece of No. 14

TO EARPHONE



Be careful not to let the heat of the soldering iron damage a transistor.


A section of plastic tubing acts as the shell that encases the radio elements.
"buss" wire and cut it to 4 in . in length. This wire serves as a common ground and can be picked up from a local supplier. First scrape off the rubber insulation and clean for good bonding. Run the solid wire to one side of the connecting lug on L1. Place L1 parallel to the ground wire. Fasten the silver mica capacitor to the grounded side and also to the antenna side of L1. All of these components are mounted in a straight and narrow line so they will go inside a \(3 / 4-\mathrm{in}\). plastic tube. Use of a pencil soldering iron is suggested, as the small components are mounted very close together.

Solder the crystal detector to the antenna lug on L 1 and to the base of the first transistor. Use longnose pliers to dissipate the heat when soldering the crystal and transistors into the circuit. It is best to start at the front of the circuit, mounting and then soldering each component into place. Solder C2 and R1 together first before soldering them to the collector terminal of TR1. A good soldering joint is made and less heat applied to the
transistor all at once. Connect the other end of the coupling capacitor to the base of TR2. Ground the emitter terminal to the base wire. Remove the plug from the earphone and solder one wire to the R1 and SW1 junction. Refer to pictorial diagram, Fig. 2, for ease in wiring. Use spaghetti and plastic tape where needed.

The battery is a 4.5 -volt Eveready miniature type with a male phono plug soldered
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Desig. \\
Ll
\end{tabular} & MATERIALS LIST-THE TORPEDO Description ferrite antenna coil, micrometer adjustment (Lafayette MS299) \\
\hline Cl & . 000330 .mfd silver mica capacitor \\
\hline C2 & 2-mifd, 6-v, electrolytic miniature capacitor (Lafayette CF100) \\
\hline R1 & 4700-ohm. \(1 / 2 \mathrm{w}\). resistor (Lafayette RS10) \\
\hline TR1, TR2 & 2N408 transistor, RCA or equivalent \\
\hline XTAL & 1N64 diode \\
\hline 1 & 1000- to 3000-ohm earphone (Lafayette AR50) \\
\hline 1 & switch, male and female phono jack, and plug (Lafayette MS167, MS168) \\
\hline 1 & 4.5-\%. Eveready battery \\
\hline Misc. & \begin{tabular}{l}
(G. C. Electronics Co., Rockford, III.) \\
Above parts available from Lafayette Radio, 111 Jeriche Turnpike, Syosset, N. Y.
\end{tabular} \\
\hline
\end{tabular}


SEE FIG 2 FOR PHONO PLUG-BATTERY ADAPTATION
to one end. File a V-notch in the wire end of the male plug, run a small fiexible wire to the prong end, and solder into place. Place a piece of spaghetti over the wire where it comes out of the V-notch so the wire will not short out. Solder a small washer to the male plug and in turn solder to the negative terminal of the battery. Take the wire lead and solder to the positive terminal of the 4.5 -volt battery.

Slip the metal clip off the coil end, and the ferrite rod will come out with it. Unscrew the threaded slug and file or grind off threads.
This will let the slug move in and out of the coil, tuning in the broadcast stations. Solder a metal washer to the rod after placing it in the coil assembly. This washer will serve as a tuning knob.
Testing Your Torpedo. Clip the antenna wire to an outside antenna or metal object and plug in the battery. Move the ferrite rod in or out until a station is heard. When the slug is pushed all the way in, you are selecting the lower part of the broadcast band. When it is pulled all the way out, you are selecting the higher end of the band.
In case the receiver does not work, first check the wiring carefully to be sure that no soldering mistakes were made. If a milliammeter is handy, insert the meter in series with one lead of the battery and check the circuit drain. The capsule radio pulls only 1 ma of current. Place the soldering iron tip on the base of TR2 when the iron is plugged in, and a 60 -cycle hum should be heard. Go to the base of TR1 and do the same thing. A louder hum should be heard.

Check to see if the connection from the crystal diode cathode is made to the base of TR1. Most of these crystal diodes are marked either with a line or a K at the cathode end. Also, a loud click or scratchy noise should be heard when the antenna lead is hooked to a
metal object.
Final Assembly and Sealing. The radio is now ready to be mounted in the plastic container. Cut a piece of \(3 / 4-\mathrm{in}\). plastic tubing about 5 in. long. File the ends down smooth. Slip the small chassis into the tube from the ferrite coil end. Let the coil stick out about \(1 / 2 \mathrm{in}\). and the female phono plug about \(1 / 4 \mathrm{in}\). Now wrap two layers of masking tape around the coil end and let the tape stick up from the plastic tube about \(1 / 2 \mathrm{in}\).
The unit is now ready to be sealed with fiber glass plastic which comes in two separate tubes. Mix a small amount at a time on a piece of board. Take a knife blade or a screw-driver blade and place the mixture inside the masking tape. Push it down tight so that a good solid bond is made. Do not let the fiber glass get in the hole in the female phono plug or the antenna coil. When the plastic sets and becomes hard, the components will not pull apart. Do one end at a time. Let the mixture set overnight or for at least eight hours. Follow the directions for correct method of mixing. They will be found on the tube container.

There are several types of fiber glass plastic available. They can be purchased at hardware stores, boat supply stores, or radio wholesale houses. After the plastic sets, pull off the masking tape. If there are a few drips or dents in it, run a small amount into the crevices and let that set. Plastic fiber glass does not need heating to harden. Both ends of The Torpedo are sealed in the same way.

After the ends are sealed and formed, use a file to smooth them. Round off the rough corners. To make the plastic capsule look like a professional job, place several rings of masking tape around the container. Then from a spray can apply the desired color of paint. Remove the masking tape when dry, and The Torpedo is ready for hard use.

\title{
Neon Flicker Lamp
}

\author{
Here's a decorative night light that doubles as a conversation piece
}

THIS flickering neon lamp can be an assuring nighttime companion in your child's bedroom, a gift for the man who has everything, or a piece for milady's dressing table. It costs only a few dollars to build, requires very little power, and will operate for a few cents a year.

The novelty of this lamp is its flicker. As rectifier D1 (see Fig. 2) converts ac line voltage into pulsating direct current, capacitor C 1 charges to a steady dc value approaching peak voltage. This is the dc voltage required for the operation of the neon glow lamp multivibrator, which consists of resistors R1 and R2, capacitor C2, and neon lamps X1 and X2.

When dc voltage is applied to the glow lamp multivibrator, one of the lamps fires the one with the lowest starting potential. Since the terminal of capacitor C 2 , which is connected to the glowing lamp, has a lower potential than the other capacitor terminal, the capacitor will charge up until the voltage on its terminal reaches the firing potential of the non-conducting neon lamp. At that point, the second lamp fires and the, other lamp extinguishes. Now the process repeats itself with C 2 charging in the opposite direction, and the operation is repetitive.
Construction Details. The housing for the lamp, a miniature kerosene lamp, can be


\section*{Wiring and Construction Sequence.}


Wire base circuit


B

Assemble the two neon lamps.


Replace the wick with the neon lamps.


Connect lamps to base circuit.


Desig.
C1, C2 D1 R1 X1, X2 Misc.
\[
\begin{aligned}
& \text { MATERIALS LIST-NEON FLICKER LAMP } \\
& \text { Description } \\
& .1 \text { mfd, } 200 \text {-volt metalized paper capacitors (Lafayette } \\
& 3 C G-804 \text { ) } \\
& \text { selenium rectifier (Lafayette MS-887) } \\
& 1 \text { meg, } 1 / 2 \text { watt carbon resistor } \\
& 2.2 \text { meg, } 1 / 2-\text { watt carbon resistor } \\
& \text { NE. } 2 \text { neon lannps (GE) } \\
& \text { at line cord and pluy, miniature kerosene lamp (avail. } \\
& \text { able at variety stores) } \\
& \text { The above parts, except for the kerosene lamp, can be } \\
& \text { obtained from Lafayette Radio, } 111 \text { Jericho Turnpike, } \\
& \text { Syosset, N. Y. }
\end{aligned}
\]

Plug the unit into ac line voltage to check operation. If the circuit has been wired properly, the glow will shift from one lamp to the other continuously. In order to alter the speed of the flicker, you will have to change the value of capacitor C 2 . By making C2 smaller, the lamp will flicker faster. Make C2 larger, and the lamp will flicker slower. After you have checked out the operation, unplug the circuit. Then fasten the lamp leads to the wick holder with Duco cement.
Insulate all exposed metal parts of the base circuit with electrical tape, and cram the base circuit into the lamp reservoir. Put two turns of reverse twist in the lamp leads to the base, and screw the wick holder on the reservoir base.

Finally, adjust the lamp positions, put the chimney in place, and you've completed the job.-Frank Woods, Jr.

\section*{Fire Extinguisher Chases Radio Bugs}
- The chilling effect of a carbon dioxide fire extinguisher will help you locate a defective part in a radio circuit that plays erratically. Often a set works fine for a few minutes after you turn it on, and then suddenly misbe-

haves or goes dead. The trouble may be a part that expands with heat after current has been flowing through for a few moments. Spray suspicious parts with \(\mathrm{CO}_{2}\) gas one at a time. The intense cold will contract a defective component so it can work normally.

You can also use Charg-A-Can Freon \#12 with a suitable adapter (sold by refrigeration supply houses). However do not use carbon tetrachloride fire extinguishers since the fumes are highly toxic.-T. A. Blanchard.

\section*{Thermistor Thermometer}

Conduct experiments in changing temperature with a compact lab instrument you can build for less than \(\$ 10\) By FORREST H. FRANTZ Sr.

TRANSDUCERS are devices that sense energy in one form and convert it to another form. The thermistor senses changes in temperature and responds with changes in resistance. The changes in resistance can be converted to changes in electrical current in a circuit.

The unit described in this article demonstrates the operation of a thermistor; change in temperature is indicated by a change in electrical meter reading. It was originally designed as a demonstration unit and a conversation piece, but some simple experiments are described here, as well as a method of calibration, which will suit it for use as a laboratory thermometer.

The circuit is shown in Fig. 3. R3, the thermistor, is one of the arms of a Wheatstone bridge; R1 in parallel with R2 is another arm, and R4 and R5 are the other arms. The 50microamp meter \(M\) is the bridge null and small temperature change indicator.

The thermistor's resistance is a function of temperature. When temperature increases, the thermistor resistance decreases, and vice


Energy changes are clearly indicated on the meter.
versa. A bridge circuit with a sensitive meter will detect smaller temperature changes than a less sensitive one, as the change in resistance for each degree of change in temperature is small.

Consfruction. Drill the metal case as shown in the layout (Fig. 4). Saw the shaft of R1 to


a length of \(3 / 8 \mathrm{in}\). Mount the switch S1, the potentiometer R1, the terminals T1 and T2, and the meter M on the front panel of the case (see Fig. 5A). T1 and T2 must be insulated from the panel.

Mount the battery holder on the back panel (see Fig. 5B). Wire the instrument with the help of Figs. 3 and 5.

Use. Fasten the thermistor R3 in the terminals T1 and T2. Turn the instrument on and adjust R1 for mid-scale meter deflection.

Now, touch the thermistor: the meter reading should increase. If the meter reading decreases, reverse the meter connections. In other words, the meter deflection should be in the direction of temperature change.

The terminals T1 and T2 have been provided so the thermistor can be used for remote temperature reading. Attach wire leads of the required lengths for the desired application.

One experimental demonstration is to show the change in meter reading when the thermometer is touched with the hand or an ice cube; another is to place a drop of cigarette lighter fluid on the thermistor, and note the cooling effect as the fluid evaporates. If the thermistor is placed at the focus of a parabolic reflector, the instrument may be used as an infrared detector. The sensitivity is limited, however.
If you care to calibrate the thermometer,


Interior view showing components and wiring.

\section*{MATERIALS LIST-THERMISTOR THERMOMETER}

\section*{Desig.}

R1 IK miniature potentiometer (Lafayette VC.32)
\(2.7 \mathrm{~K}, 1 / 2 \cdot \mathrm{w}\). carbon resistor, \(10 \%\)
400 oh m thermistor (VECO 23E3) or
500 ohm thermistor (Glennite 25TD2)
100 ohm, 1/g.w. carbon resistor, \(10 \%\)
R4, R5
\begin{tabular}{l}
\(\mathrm{R4}\), \\
M \\
S \\
\hline
\end{tabular}
T1, T2
T1, T2
Misc
O. 50 microamp. square meter (Lafayeft

SPST touple switch (Lafayette SW.21)
5-way bioline posts (Lafayette MS 565 (
2 -way binding posts (Lamayeted in series (Eveready 915)
2-cell battery holder (Lafayette MS-181)
\(21 / 4 \times 21 / 4 \times 5^{\prime \prime}\) aluminam minibox (Premier MC-379) miniature knob (Lafayette MS-185)
Parts for this project are available from Lafayette Radio, 111 Jericho Turnpike, Syosset, L. I., N. Y.
you can use it as an experimental quantitative instrument.

Calibration. This requires calibration of R1. With a triangular file, make a groove in the edge of the knob. Fill the groove with contrasting India ink to provide an index. Prepare a paper scale with a \(1-\mathrm{in}\). diameter circle marked on it, and fasten it to the case with Carter's rubber cement.

Place the thermistor (equipped with extension leads connected to T 1 and T2) in ice water (Fig. 6). Adjust R1 for zero meter


Mount batteries on the back of the case.


THERMISTOR THERMOMETER BRIDGE
reading, and place a calibration mark on the paper scale and mark it 0 (for zero degrees Centigrade).

Heat the water gradually, stirring constantly, until the meter deflects full scale. Adjust R1 for zero meter reading, note the calibration thermometer reading, and enter it beside the calibration mark for the new R1 setting. Repeat this process up to boiling point of the water, and R1 will be calibrated in steps.

Reading the R1 setting plus the interpolated value of the meter reading to the next higher R1 calibration will give you the temperature. The precision of the instrument will approach that of the calibration thermometer used.

\section*{Earphone Volume Reducer}

- To reduce the volume of an earphone of the "earplug" type when using the phone in conjunction with a set that has insufficient volume reduction at its lowest setting (this happens often near stations) slip a soft rubber grommet over the phone. This keeps it from fitting into your ear so far, yet still allows it to fit firmly. The lengthened distance between phone diaphragm and ear drum lowers the volume several db's.-John A. Сомstock.

"Clara, you've been shopping again!"


\section*{C-B Walkie Talkie}

A super het transceiver with exact crystal control for both receive and transmit channels on the \(27-\mathrm{mg}\) citizens band. Using four transistors and a diade, we feed 80 milliwatts of power to the 10 -section telescoping antenna.
No license is required and the unit can be operated by anybody. The range is one mile under normal conditions, increased when conditions are optimum, such as over water. The finger tip push to talk switch provides high speed break-in operation. Comes complete with blue and black metal case with leather carrying case, crystals, and six penlight cells. Priced at \(\$ 19.95\) each or two for \(\$ 38.95\) from Lafayette Radio Electronics Corp., Dept. RTE, 111 Jericho Turnpike, Syosset, N. Y.

\section*{Tube Tester Kit}

Called the Grid Circuit Analyser Tube Tester, this kit will test 10 - and 9 -pin miniatures, 12 -pin compactrons, 7 - and 5 -pin nuvistors, 9 -pin novals, novars, octals and loctals, plus many industrial and European types. It checks for inter element shorts, cathode emission at optimum pre-selected plate loads, gas content and grid emission, as well as picture tubes by means of cathode emission. The new kit sells for \(\$ 49.95\), or wired and tested, for \(\$ 67.95\). Paco Electronics, Dept. RTE, 70-31 84th St., Glendale 27, N. Y.


\section*{LOOKING OVER NEW PRODUCTS}


\section*{15-In. Speaker}

This three-way hi-fi speaker features a 5 lb . ceramic magnet. It is custom built in England. The three elements are axially mounted and the woofer section is vacuum constructed. It is plastic terminated with free edge cone suspension to eliminate standing waves and surround resonances. The woofer cone resonance is 25 cycles.
The overall frequency response is 20 to \(20,000 \mathrm{cps}\) with a power capacity of 50 watts. The impedance is 16 ohms. \(\$ 64.50\) from Lafayette Radio Electronics Corp., Dept. RTE, 111 Jericho Turnpike, Syosset, N. Y.

\section*{Amateur Receiver}

The frequencies from 550 kilocycles to 30 megacycles are covered in four bands by this new communications receiver. Front panel controls consist of on/off volume, main tuning, band selector and phone-CW switch. A front panel headphone jack permits quiet listening. Plugging in the low impedance phones automatically disconnects the built-in 4 -in. speaker. The unit uses three tubes and a silicon diode for five-tube performance. The slide rule dial and wrinkle finish cabinet make for a professional appearing receiver. Operates on \(105-125\) volts, \(50 / 60\) cycles. \(\$ 39.95\). Lafayette Radio Electronics Corp., Dept. RTE, 111 Jericho Turnpike, Syosset, N. Y.


\section*{Sound Spectrometer}

This acoustical device helps isolate sounds and their levels. It not only tells you how loud sounds are, measured in decibels, but also in what frequency range they fall. The new model has been modified to meet ASA specifications which require a low frequency cutoff at 45 cycles. It was originally designed with conventional octave bands, the first band having a cut-off sharply at 37.5 cycles.

The unit is finding great acceptance in industry because of its convenient weight, size and simplicity of operation. Industrial Acoustics Co, Dept. RTE, 341 Jackson Ave., New York \(54, \mathrm{~N}\). Y.

\section*{LOOKING OVER NEW PRODUCTS}

\section*{Stereo Āmplifier}

A headphone output on the front panel of this new amplifier permits constant monitoring of all program sources. A tape monitor switch and special inputs and outputs are included for the tape recording enthusiast. A derived third channel output is provided to drive a power amplifier for extension speakers.
Amplifier provides 15 watts per channel, hum and noise are 70 db down. Intermodulation distortion is \(0.5 \%\), harmonic distortion is \(0.8 \%\). Unit measures \(151 / 2\) wide, \(51 / 4\) high, \(131 / 4\) deep. Accessory case available in walnut, mahogany or leatherette covered metal. Model 200 stereo amplifier is available from H . H. Scott, Inc., Dept. RTE, 111 Powder Mill Rd., Maynard, Mass.


\section*{Page-Reply And Music}

In addition to providing music as a background for employees, this unit also permits selective paging and reply facilities. The music can be programmed to start and stop at the time sequences chosen by the user. Music sources are available either from tapes or FM tuners.
An additional feature of the system is a tone generator which signals various increments in the working day, such as coffee breaks and lunch periods. Fisher Berkeley Corp., Dept. RTE, 1475 Powell St., Emeryville 8, Calif.

\section*{Pegboard Kit}

The secret of this kit is the peg itself which may be inserted wherever two leads are to be connected. When a project is in development, the leads are inserted between the brass peg and the flexible sleeve surrounding it. Also the design becomes more firm, temporary connections are replaced by soldering the leads to the brass tips. Virtually no components are lost as no soldering is done until the design is well organized.

The kits ape ideally suited to classroom instruction, as well as electronic development laboratories. The kits are available in three standard sizes, \(5 \times 8,81 / 2 \times 11\), and \(11 \times 14 \mathrm{in}\). Accessories include buss strips and anchor inserts for holding sockets and bulky components. Priced from \(\$ 2.50\) to \(\$ 9\). Laguna Labs, Dept. RTE, 2319 S. Coast Blvd., Laguna Beach, Calif.



\section*{Build Better Boats with S \& M FULL-SIZE Patterns}


Insure Accuracy-Full-size patterns ón the "Minimax" duplicate the originals used by the designer when he built the first "Minimax". Each component can be cut to exact size for a perfect fit in final assembly.

Convenient-With full-size patterns on the Moth Class "Sun Fun Sailer" you don't incur the extra expense and time that is spent acquiring the necessary drawing tools and making the drawing on extra large sheets of paper.


Save Time-Ready to use when you are ready to begin. Full-size patterns on critical parts in the "Sea Flea" enoble you to use time generally spent an drawing full-size patterns in hours of enjoy. ment on this hair-trigger action surfboard that provides you with the utmast in sailing sport.


\section*{Complete plans for each one of these popular boats are available af:}


\section*{ORDER YOUR 1963 S \& M HANDBOOKS}

\section*{EACH}

Includes postage and handling

Use the coupon below to insure yourself that you will receive each issue of the S\&M Handbooks you want-direct to your mail box. No chance of missing a single copy, if you order by mail.
Here's the complete 1963 line-up. Your copies will be mailed to you, postpaid, as they are published during the months shown below. Allow four weeks for delivery of 1962 editions.
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1962
Edition
609
596 & \begin{tabular}{l}
JANUARY \\
620-Radio-TV Experimenter 621-Car Repair Handbook 622-Income Opportunities 623-Gun Handbook
\end{tabular} & 1962
Edition
617
592
594
597 & \begin{tabular}{l}
FEBRUARY \\
624-Home Workshop Handbook \\
625-1001 How-To Ideas \\
626-Science Experimenter \\
627-Garden Handbook
\end{tabular} & 1962
Edition
593
613 & \begin{tabular}{l}
MARCH \\
628-Boat Builder's Handbook 629-Electrical Handbook 630-Fisherman's Manual 631-How To Buy Or Sell Your House
\end{tabular} \\
\hline \[
\begin{aligned}
& 612 \\
& 618 \\
& 599
\end{aligned}
\] & \begin{tabular}{l}
APRIL \\
632-Radio-TV Experimenter 633-Car Repair Handbook 634-Woodworker's Encyclopedia \\
635-Camping Handbook
\end{tabular} & & \begin{tabular}{l}
MAY \\
636-Home Workshop Handbook \\
637-1001 How-To Ideas \\
638-Home Repair Handbook \\
639-Careers and Jobs
\end{tabular} & \[
\begin{aligned}
& 607 \\
& 600 \\
& 601
\end{aligned}
\] & \begin{tabular}{l}
JUNE \\
640-Boat Builder's Handbook 641-inventor's Handbook 642-Water Sports Handbook 643-Auto Racing Handbook
\end{tabular} \\
\hline & \begin{tabular}{l}
JULY \\
644-Radio-TV Experimenter 645-Car Repair Handbook 646-Woodworker's Encyclopedia 647-Home Appliance Repairs 648-Kitchen \& Bath Improvements
\end{tabular} & \[
\begin{gathered}
.608 \\
606
\end{gathered}
\] & \begin{tabular}{l}
AUGUST \\
649-Home Workshop Handbook 650-1001 How-To Ideas 651-Science Experimenter 652-Do-It Yourself Plumbing 653-Surplus and Sàlvage Projects
\end{tabular} & 610 & \begin{tabular}{l}
SEPTEMBER \\
654-Boat Builder's Handbook 655-Electrical Handbook 656 -Junior Mechanics Handbook 657-Elementary Electronics 658-Christmas Suggestions.
\end{tabular} \\
\hline & \begin{tabular}{l}
OCTOBER \\
659-Radio-TV Experimenter 660-Car Repair Handbook 661-Woodworker's Encyclopedia \\
662-Radio-TV Repairs \\
663-Photography Guide
\end{tabular} & 615 & \begin{tabular}{l}
NOVEMBER \\
664-Home Workshop Handbook 665-1001 How-To Ideas 666-Furniture Handbook 667-Crafts \& Hobbies 668-Home Modernization Handbook
\end{tabular} & \[
\begin{aligned}
& 619 \\
& 602
\end{aligned}
\] & \begin{tabular}{l}
DECEMBER \\
669-Boat Builder's Handbook \\
670-Home-Built Power Tools \\
671-Engine Handbook \\
672-Small Investor's. Guide \\
673-Small Home Plans
\end{tabular} \\
\hline
\end{tabular}

I am enciosing \$ \(\qquad\) I have written the numbers of the S\&M.

\section*{SCIENCE and
MEHANIG HANDBOOKS}

Name \(\qquad\)
(Please print) Handbooks ordered below. The Handbooks are to be shipped to me as they are published. \(\qquad\)
\(\qquad\)
\(\qquad\)

No inventory - no investment on your part RADIO-TV EXPERIMENTER is opening an entirely new world for direct sales representatives ... a world in which you can achieve your favorite goals. Here is a world where you will earn extra money to buy the things you want and need. A world where your earnings are obtained in a dignified, pleasant and self-satisfying manner.
And your selling is made easy for you, too! Your friends, and neighbors, people you work or study with - all of these people-and more are your prospects for additional income.
Do you want mcre information . . . it's yours for the asking. Please fill out all the blanks on the coupon below. It's your first step to making all those extra dollars.

Pete Reynolds - Davis Publications, Inc. - 505 Park Avenue - New York 22, N. Y.
I want to get started making those extra dollars. Please send me details.
NAME \(\qquad\)
ADDRESS \(\qquad\)

\footnotetext{
city \(\qquad\) ZONE STATE \(\qquad\)
BANK REFERENCF \(\qquad\)
PRESENT PRINCIPAL OCCUPATION
AGE
}

\title{
Your Best Newsstand Investment
}

Proven money-making enterprises are featured in this volume of INCOME OPPORTUNITIES. Advantages, responsibilities and rewards of working with a franchise are compared to the responsibilities of "going it alone." You can get first-hand information through the success stories that show the growth of ideas that have resulted in high profit ventures by handling an exclusive line yourself or having others work for you on a full- or part-time basis. This volume is really an investment because it will show you where solid profits can be obtained. Buy it now and read about the high returns available in:
- Electrical Repairs
- Auto Seat Covering
- Lapidary Retailing
- Writing for Trade Magazines - Travel Agenting

\section*{Tool Rental}

Odd-Jobbing
Marketing Food Specialties
- Position Placing for Profit
- Selling by Mail-Order

SCIENCE AND MECHANICS MAGAZINE Handbook Division, 505 Park Avenue
New York 22, New York
Enclosed is \(\$ 1\) to include postage and handling for Income Opporfunifies
\#622. Please allow four weeks for delivery. Far special handling, including
| first class mail delivery, add 50c to your order.
I

Pick up your copy of this informative investment guide and the other howto SCIENCE AND MECHANICS handbooks that are now at your newsstand, or send \$1 and the coupon af left to have it delivered to you.

\section*{ON SAIE NOWI Sermer \\ N \\ sale左 Now newsstands}


\section*{\#622 Income Opporłunities}

Dozens of successful ways to be your own boss on a full-time basis or to conduct a small business profitably on a part-time arrangement. This money-making guide reveals how many franchise operations work and the opportunities available in business ventures that require little capital investment. These articles explain how to get started in business and how to keep it operating on a profitable basis. You'll read about what is required to make money in such business opportunities as:
- Position Placing for Profit
- Selling by Mailorder
- Travel Agenting
- Auto Seat Covering
- Electrical Repails
- Writing for Trade Magazines
- Lapidary Retailing
- Odd-Jobbing
- Marketing Food Specialties
- Tool Rental

\section*{\#621 Car Repair Handbook}

A must guide for every weekend mechanic who wants to keep his car in like-new condition and in peak running order. You'll find many applications for the more than 20 servicing articles that give complete how-to instructions so you can use tools you already own. These articles are fully illustrated with photographs and drawings to make servicing that much easier. A partial listing of the contents includes:
- Save Your Upholstery
- Installing a Throttle Control
- How to Get More MPG
- Fire Up Your Heater
- Beat Winter No-Start
- 26 Emergency Roadside Repairs
- Take the Tap Out of Tappets
- Longer Life for Tires
- Rust Stopping Tips
- What's Wrong with Imports


\section*{\#623 Gun Handbook}

A fact-filled reference for targeteer, hunter and collector. Fully-illustrated volume provides you with money-saving ideas on loading your own ammo, tips on gun care and customizing. Handgun enthusiastsboth beginner and advanced-will find advice from champions and top coaches very beneficial. Rifle and shotgun buffs are briefed on latest developments in their areas and will be interested in a new weapon that fires four different sizes of ammunition. Buy it and read about:
- New Loads Make News
- Knock-Down: Fact or Fiction?
- How to be a Handgunner
- Build a Clay Pigeon Catapult
- Kitchen-Table Handloading
- Variable Power Scopes
- Artistry in Metal
- Sighting-In Your Rifle
- All Around Gun
- New Light on Old Kentuckys

Pick up your copies of these comprehensive volumes at your newsstand or send \(\$ 1\) to include postage and handling for each guide ordered to:

\section*{SCIENCE AND MECHANICS}

\section*{HANDBOOK DIVISION}

505 PARK AVENUE
NEW YORK 22, NEW YORK
```

SCIENCE AND MECHANICS MAGAZINE
Handbook Division, 505 Park Avenue, New York 22, Now York
Enclosed is \$....... to Include postage and handling for the do-
it-yourself volumes circled below, at \$1 each. Please allow four
weeks for delivery. For speclal handling, including first class
mail delivery, add sit per item ordered.
\#620
\#621
\#622
NAME

```
\(\qquad\)
```

ADDRESS
CITY_ZONE__STATE

```
\(\qquad\)
\(\qquad\)

\section*{Build Yourself A One-Man Modern Biplane}

Completely modern in design but based on the traditional one-man flying machine of yes. teryear is the EAA sport biplane that is adoptable to home construction, easy to maintain, and costs under \(\$ 1600\) (with a used engine). She is capable of carrying a \(230-\mathrm{fb}\). pilot at a rate of climb of \(400 \mathrm{ft} . / \mathrm{min}\). to a ceiling of 7000 ft . With an 85 hp Continental engine up front her top speed was about 130, and cruising speed around 110 . The biplane design permits a larger engine-up to 125 hp . Positive response and orthodox spinning behavior are the final traits that mark her as an ideal one-man build-it-yourself flying machine.

Craft Print No. 334, comprising 8 sheets of drow. ings ond full building instructions are available at:


SCIENCE and MECHANICS,
Craft Print Division.
505 Park Avenue, New York 22, N. Y.
Enclosed is \(\$ 10.00\) for complete plans of the EAA Biplane that include full buildlng instructions. To avoid possible loss of coin or currency in mails, remit by check or money order (no C.O.D.'s or stamps). Please allow four weeks for delivery. For speclal handling, including first class mail delivery, add \(50 \%\) per item ordered.
Name
(iplésase printi)

Clity, Zone, state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Add \(\mathbf{1 0 \%}\) for Canadian and Forelgn ordera.


If You've Enjoyed Through This SCIENCE and MECHANICS Handbook
Yau should subscribe to SCIENCE and
MECHANICS

New Subscribers: Use This Money-Saving Coupon

\footnotetext{
SCIENCE and MECHANICS
505 PARK AVENUE, NEW YORK 22, N. Y.
Please enter my subscription to SCIENCE and MECHANICS10 issues for \(\$ 2.98\)Ey enclosing payment you may double this offer and receive 20 issues for \(\$ 5.96\)
\(\square\)
Name Payment Enclosed Bill me
}

\section*{SOLUTIONS}

Electronic Numbergram, page 85


Ham Radio Anagram, page 137


\title{
WHITE'S RADIO LOG
}

\author{
An up-to-date broadeasting directory AM, FM, TV and Short Wave Stations
}

Every effort has been made to ensure accuracy of the information listed in this publication, but absolute accuracy is not guaranteed and, of course, only information available up to press-time could be included. Copyright 1963 by Science and Mechanics Publishing Co., a subsidiary of Davis Publications, Inc., 450 East Ohio St., Chicago 11, III.

\section*{QUICK REFERENCE INDEX}
U.S. and Canadian AM Stations
by Frequency
U.S. and Canadian AM Stations by Location 168
U.S. AM Stations by Call Letters. . . . . . . . . . . 177
Canadian AM Stations by Call Letters. . . . . . 186
Mexican and Cuban AM Stations
186
Canadian Short-Wave-Domestic and Internationa
U.S. FM Stations by States
187
U.S. FM Stations by Call Letters. . . . . . . . . . . 190
Canadian FM Stations by Location. . . . . . . . 192
Canadian FM Stations by Call Letters...... 193
U.S. Television Stations . . . . . . . . . . . . . . . . . . 193
Canadian Television Stations. . . . . . . . . . . . . 194
World-Wide Short-Wave Stations. . . . . . . . . . 195
U. S. and Canadian AM Stations by Frequency
U.S. stations listed alphabetically by states within groups, Canadian stations precede U.S. Abbreviations: Kc., frequency in kilocycles; W.P., watt power; \(d\)-operates daytime only. Wave length is given in meters Kc. Wave Length W.P. 540-555.5
CBT Grand Falls, N.F. CBK Rogina, Sask. FFIB Sa, Ca KGTO Cypress Gardili WDAK Columbus, Florida KBRY Codambus, Ga, idaho 5000 KWMT Ft Dedinos. idano 5000 d WMMV Pocomoke City, Md. 500 d WBIC ISID N Y WETC Wendell-Zebulor, N.C. 250 d WARD Canonsburg Pa, N.C. 250 d WARD Cannonsburg, Pa. WOXN Clarksvilie. Tenn WRIC Richlands, \(V\) al

\section*{550-545.1}

CFNB Fraderlcton. N.B. CFBR Sudbury, Ont
HLN Three Rivers, Que. CKPG Prince George. B.C. KENI Anchorage. Alaska KOY Phoenix, Ariz. AFY Bakersfield. Calif. KRAI Craío. Colo. AY C Onge Park, Fla. WGGA Gainesvilie. Ga. KMVI Walluku, Hawail KFRM Concordia, Kansas WCBI Columbus, Miss. KSD St. Louls, Mo. KOPR Butte, Mont. WGR Buffalo. N.Y. WDBM Statesville, N.C. KFYR Bismarck. N.Dak WKRC CIncinnati, Ohio KOAC Corvallis, Oreg. WHLM Bloomsburg. Pa. WPAB Ponce. P.R. WXTR Pawtucket, R.I. KCRS MIdland. Tex. KTSA San Antonio, Tex
WDEV Waterbury, Vt. WDEV Waterbury, Vi WSVA Harrisonburg, Va. KARI Blalne, Wash.

\section*{560-535.4}

CJDC Dawson Creek, B.C. 1000 CHCN Marystown. Nfld, Can. Ikw CFOS Owen Sound, Ont. CKCN Seven lles, Que. WOOF Dothan. Ala, KYUM Yothan. Ala. KSFO San Fran.: Callf. KLZ Denver. Colo. WGAM Milami. Fia WIND Chicago. III. WMIK Middestoro, Ky WGAN Portland. Malne WFRB Frostburg. Md WHYN Sorinofield. Mass

\section*{K. Wave Length W.P.|Kc. Wave Length W.P. Kc. Wave Length W.P.} WQTE Monroe, Mich. WEBC Duluth. MInn.
10000
50000 KWTO Springfold. Mo,
KMON Great Falls. Mont WGAI Elizabeth City Mont. WFIL Phlladolphla. Pa. Wis Columbia, S.C. WHBQ Memphis. Tenn. KFDM Beaumont. Tox KPQ Wenatchee. Wash. WJLS Beckley. W.Va.
\(570-526.0\)
CKEK Cranbrook, B.C. CKCQ Quesnel, B.C CFCB Corner Brook. N.F. CFWH Whitehorse. Y:T. WAAX Gadsden. Ala KCNO Alturas. Callf KLAC Los Angeles. Callf. WGMS Washington, D.C. WACL Wayeross, Ga. WKYB Paducah, Ky. WVMI Biloxi. Mjss. WMCA New York. N.Y. WSYR Syracuse. N. Y. WWNC Ashevllie. N.C. WLLE Raloloh, N.C, WKBN Youngstown. Ohlo WNaX Yankton, S.Dak. WFAA Dallas, Tex.
WBAP Ft. Worth. Tex WBAP Ft. Worth, Tox. KLUB Salt Lake Cit KVI Seattle. Wash.
WMAM Marlnotte, Wis.

580-516.9
C.JFX Antigonish. N.S. CFKA Otawa, Ont. CKPR Ft William. CKUA Edmonton Alt CKY WInnipeo Man WABT Tuskege Ala KTAN Tueson Aro KMA Fresno Calli. KUBC Montrose. Colo. WDBO Orlando. FIa WGAC Augusta. Ga. KFXD Nampa ldaho KFXD Nampa, Ida KSAC Manhattan. Kans. WIBW Topek Kans KARB Alexandrla, WTAG Worcester, Mass WELO Tupelo. Miss. KANA Anaconda, Mon WAGR Lumberton. N.C KWIN Ashland, Oreg. WHP Harrisburg. Pa WKAQ San Juan. P. KOBH Hot Springs. S.Dak WRKH Rockwood. Tenn

WLES Lawreneville, Va. 500d CJAT Trall, B.C WCHS Charleston. W.Va. WKTY LaCrosse, Wis. 590-508.2
CFAR Flinflon. Man CKRS Jonquiore. Que KHAR Anchorage, Alaska WRAG Carrollon, Ala. WRAG Carrollon, Ala. KFXM Sat Sorings, Ark. KTHO Taho Valley, Calif. KCSJ Pueblo, Colo. WDLP Panama Cit WPLO Atlanta. Ga. KGMB Honolulu, Hawall KID Idaho Falls, Idaho WBBY Wood River, III. WVEK Lexington, Ky. WEEI Boston, Mass. WKZO Kalamazoo, Mich. KGLE Glendive. Mont. WOW Omaha. Nobr. WROW Albany. N.Y. WGTM Wilson, N.C. KUGN Eugene, Orag. WARM Stranton, Pa. WMBS Uniontown, Pa. KTBC Austin, Tex. KSUB Cedar City. Utah WLVA Lynchburg. Va. KHQ Spokane. Wash. 600-499.7
CFCF Montreal, Que. CFCH North Bay, Ont. CFQC Saskatoon, Sask. CKCL Truro, N.S.
5000 WIRB Enterprise. Ala. \(\begin{aligned} 50000 & \text { KCLS Flagstaff, Arlz. } \\ 5000 & \text { KVCV Redding. Calif. }\end{aligned}\) KOGO San DIogo, Calif. KZIX Ft. Collins, Colo. WICC Brideoport. Conn. WPOQ dacksonville, Fla. WMT Cedar Rapids. Iowa WWOM Now Orleans, La, WFST Caribou, Maine WCAO Battimora. Md. WLST Escanaba, Mich. WTAC FIlnt, Mieh. KGEZ Kalispell. Mont. wCVP Murphy, N.C. WSIS Winston-Salem. N.C. KS,JB Jamestown, N.D. WFRM Coudersuort. Pa. WAEL Mayaquez, P.R. WREC Memphis. Tenn. KROD EI Paso, Tex. KERB Kormit, Tex KTBB Tyler. Tex.
\(610-491.5\)
CHML Mont Laurier, Que.
500 CH CHC Now Garlisle. Que.
\begin{tabular}{l|l}
\(500 d\) & C \\
5000 & C \\
5000 & C
\end{tabular}WIP Philadelphia. Pa.WSLS Cogan, Utah5000
5000
WSLS Roanoke. Va.
WHP WInchester, VWHPL WInchester, Va,
KEPR Kennewick. Wash.
\(000620-483.6\)
        10000 WJOX Jackson, Miss.
        1000 WVNJ Newark. N.J.
        1000 WHEN Syracuse. N. Y.
        WDNC Durham. N.C.
        K G W Portland, Oreg.
        WHJB Greensburg, Pa.
        WCAY Cayce. S.C.
        WATE Knoxville. Tonn
        630-475.9
            1000
5000
            5000 WHITE'S RADIO LOG5000
5000
KILT Houston 5000
5000 KILT Houston. Tex.\begin{tabular}{lll} 
& 500 \\
\hline
\end{tabular}
    CFCL Timrains, Ont. 10000
    0 CKCK Regina, Sask. \(\quad 5000\)
    000 CKCK Regina, Sask. 5000
    \(\begin{array}{ll}5000 & \text { KTAR Phoenix, Ariz. } \\ \text { KNGS Hanford Callf. } & \mathbf{1 0 0 0}\end{array}\)
    1000 KNGS Hanford, Calif. 1000
    1000 KSTR Grand Jumetion. Colo. 5000 d
    5000 WSUN St, Petersburg, Fla. 5000
        WTRP LaGrange, Ga, Fa. 1000 d
        KWAL Wallace, Idano 1000
        5000 KMNS Sioux City, lowa 1000
        \(\begin{array}{lll}10000 & \text { WTMT Loulsville. Ky. } & 500 \mathrm{~d} \\ 5000 & \text { WLBZ Bangor. Malne } & 5000\end{array}\)
        WATE Knoxville. Tenn. 500 d
        KWFT Wichlta Falls. Tex. 5000
        WCAX Burlington. Vt. 5000
        WWNR Beekley. W.VA, 1000
        \(\begin{array}{ll}\text { WTMJ Milwaukee. Wis. } & 5000\end{array}\)
        CFCO Chatham. Ont. 1000
        \(\begin{array}{lll}1000 d & \text { CKAR Huntsvile, Ont. } & 1000 \\ 5000 & \text { CHLT Sherbrooke, Que. } & 5000\end{array}\)
        \begin{tabular}{l|ll}
5000 & CHLT Sherbrooke, Que. & 5000 \\
5000 & CFCY Charlottetown, P.E.I. & 5000
\end{tabular}
            5000 CFCY Chariottetown, P.E.I. 5000
            \begin{tabular}{l|ll} 
000d & CJET Smith Falls. Ont. & 5000 \\
CKRC Winnlpeg, Man. & 5000
\end{tabular}
            1000 CKRC Winnipeg, Man. \(\quad 5000\)
            5000 CKOV Kolowna, B.C. \(\quad 1000\)
            5000 CKYL Peace River. Alta. 1000
            WavU Albertville. Ala. loo0d
            1000 CHED Edmenton. Alta. 10000
        CHED Edmenton. Alta 10000
        KJNO JuneaU Alaska 1000
                159

Ke. Wavolength KVMA Magnolla, Ark KIDO Monterey. Calif KHOW Denver, Colo. WhAL Washington, D.C WSAV Savannah. Ga. WNEG Toccoa, Ga. KIDO Boise. Idaho WLAP Lexington. Ky. WJMS Ironwood, MII KDWB So. St. Paul, Minn KXOK St. Louls. Mo. KOH Reno Nev. KLEA Lovington. N. Mex. WIRC Hiekory, N.C. WMFD Wilmington, N.C. KWRD Coquilie, Dreg. WEJL Scranton, Pa. WKYN San Juan, P.R. KGFX Pierre, S.Dak. KMAC San Antonlo Tex KSXX Salt Lake City, Ut
KGDN Edmunds, Wash. KZUN Opportunity, Wash
640-468.5
CBN St. John's, N.F. WOI Ames, lowa WHLO Akron. Ohlo
WNAD Norman, Okla,
650-461.3
KORL Honolulu. Hawall WSM Nashville. Tenn.

\section*{660-454.3}

KMEO Omaha, Nebr. WNBC Now York. N.Y. WESC Grenvilie, S. \(670-447.5\)
WMAQ Chicago. III.
680-440.9
CHFA Edmonton, Alta. homas, Ont KGB TImmins, ont. KNBC San Fran., Calit WPIN St. Petersburg. Fil WCTT Corbln, Ky. WCBM Baltimore, Md. WNAC Boston, Mass. WDBC Escanaba. Mich WFEQ St Joseph, Mo. MR Bumbon. N.Y. WPTF Ralelos Ner, WISR Buller, P.
WAPA San Juan, P.Rico. WMPS Memphls, Tenn. KENS San Antonlo. Tex. KOMW Omak. Wash. WCAW Charleston, W.Vs.

\section*{690-434.5}

CBU Vaneouyer, B.C. CBF Montreal, Que. KVNA Flagstaff. Arlz. KEVT Tueson, Ariz. KBBA Benton, Ark. KAPI Pueblo, Colo
WADS Ansonla, Conn. WAPE Jacksonville, Fia, KBLI Blackfoot. Idaho KGGF Cofeyville, Kans. WTiX Now Orleans, La,
KSTL St. Louis, Mo
KEYR Torrytown, Nobr KRCO Prinevilte. Or
WXUR Mrdia,
O
KUSD Vermillion, S. Dak.
KHEY EI Paso. Tex
KPET Lamesa, Tex.
KZEY Tyler. Tox.
WCYB Eristol, Va.
WNNT Warsaw. Va.
WELD FIsher, W.V.

\section*{700-428.3}

WLW Cincinnati. Ohlo

\section*{\(710-422.3\)}

CJSP Leamington, Ont.
CFRG Graveibourg, Sask WKPG Me Marle, Que. KKRG Mobile, Ala, MBT Los Angeles, Calif. WGBS Miver. Colo. WROM Rom, Fla
KEEL Shreveport, La
WHB Kansas CIty, Mio
WOR Now York, N. Y.

W.P 1000 1000 1000
5000
5000 500 d nn. 5000
1000 d


\section*{ \\ 1000}

5000 d
500 d
500 d
5000
KFQD Anchorage, Alaska 00 KSUD W. Momphis, Ark. KLOE Goodland, Kans. WFMW Madisonville. Ky.
WMTC Van Cleve, Ky. KTRY Bastrop, La.
WARB Covington. WM MS Bath, Malna WACE Chicopee, Mass.
10000
50000
5000
1000
1000 d

10000
50000

500d
50000
10000 d
1000
50000

5000 d
1000
10000
10000
10000
10000

10000 50000 1000
250 d
250 d
250 d
250 d
250 d
500 d \(500 d\)
25000 d
10000
1000 d
10000
500 d
1000 d
1000d
1000 d
1000d
000 d
500
1000 d
250
250 d
10000 d
250d 500 d

50000

1000 d
5000 d
10000
1000
50000
50000
5000
50000
1000 d
50000
10000
50000
Kc. Wove Length DZRH Manlia, P.l. WTPR Parls. Tenn. KGNC Amarilio, Tox KURV Edinburg. TeX,
KIRO Seatile. Wash, WDSM Superior. Wis.
720-416.4
WGN Chieago, III. 730-410.7 CJNR BlInd RIver, Ont. CKAC Montreal, Que.
CKDM Dauphin, Man.


\section*{\(760-394.5\)}

KGU Honolulu, Hawail W \({ }^{\text {WRPS }}\) Tarboro, N.C. WCPS Tarboro, N.C.
WORA Mayaguez. P.

\section*{770-389.4}

KUOM MTnneapolis, Minn. WCAL Northfield, MIIn. WEW St. Louls. Mo. KOB Albuquerque, N. Mex. WABC New York. N.Y, KXA Seattle, Wash. 1000 d
780-384.4
WBBM Chicago, III. WCKB Norfolk, Nob. WBBO Forest City, N.C. KSPI Stillwater, Okla. WAVA Arlinoton, Va.

\section*{790-379.5}

CKMR Neweastle, N.B. CHB Hallfax, N.S. CKSO Sudbury. Ont.
WTUG Tusealoosa. Ala

1000
0000 10000
10000 10000
2500
2500 W.P.
10000
1000
2500
10000
250
50000
5000
 CHAB Moose Jaw. Sask. CKOK Pentleton, B.C.
CFOB Ft. Franes, Ont.
CJLX Ft. Willam, Ont. cJBa Bollevilis. Ont. CKLW WIndsor, Ont. CJAD Montreal, Qu VOWR St. Johns, N.F. WMGY Montgomery. KINY Juneau. Alaska K YOM Morriltion Ark. KUZZ Bakriton, Ark. KDAD Wood, Calif. KBRN Brighton, Colo WLAD Danbury, Conn. WLAD Danbury, Conm WJAT Swainsboro, Ga KXIC lowa clity, lowa
WBOK New Orleans, La WCCM Lawrence, Mass. KREM Farmington, WKDN Camden, N.J. KJEM Okia City, Ohia. WCHA Chambersburg, Pa WDSC Dillon, S.C. WEAB Greer, S.C. WEAB Greor, S.C. KBUH Brigham City, Utah WSVS Crowir \(\begin{aligned} & \text { WKE } \\ & \text { WUntingto }\end{aligned}\) WKEE Huntington, W.Va.
WDUX Waupaca, wis.

\section*{\(810-370.2\)}

\section*{KGO San Franelseo, Callf. WABW Annapolis, Md.}
W1000 d
10000 d
1000 d

250d
50000
WGY Seheneetady, N.Y. Y. \(\quad 50000\) WKBC N. Wilkesboro. N.C. 1000 d WCEC Roeky Mount, N.C. 1000 d \(\begin{array}{ll}\text { WEDO Mc Keesport, Pa. } & 1000 \mathrm{~d} \\ \text { WKVM San Juan, P.R. } & 25000\end{array}\)

\section*{820-365.6}

WAIT Chicago, lII.
10000 WOSU Columbus, Ohio
50000
1000 d
5000
WBAP Ft. Worth, Tex.

\section*{830-361.2}

5000 d
5000 d
1000 d
\(000 d\)
50000
50000
000 d

50000
1000 d
000d
1000 d
lo00d
250 d
1000 d

1000
10000
10000
10000
500 d
5000 d
1000

Kc. Wove Length KMCO Conroe, Tex. KCLW Hamilito Tex. WOOY Bassett, Va. KUEN Wonatcheo. Wash. WATK Antigo, Wls.
910-329.5
CJDV Opumheller, Alta.
CKLY Lindsay, ont.
 CHRL Roberval, Que.
WDVC Dadevillo, Ala.
KLCN Bhoenix, Ariz,
W.P.
500 d
2500
2500
5000
1000
1000
250 KAMD Camden, Ark. KDEO EI Cajon. Calif. K0XR Oxnard, Calif. KPOF nr. Denver, Colo. WHAY Now Britaln,
WPLA Platy City fla
WGAF Yaldosta, Ga. 500
100 000
000
000
0 1000
5000

0000 KBGN Caldwell, Ida. WSUI lowa CIty, lowa WLCS Baton Rougo, WABI Bangor Maln
WFDF Fillnt Mich WFDF Filnt, Mich. WCOC Merlidan, Miss.
KOYN BJIlings, Mont. ilss.
ont.
 KYSS Missoula, Mont.
KBIM Roswell, N.Mox WLAS Jacksonville, N,
KCJB Minot. N.Dak. 1000
500 d
5000 WPFB Mlddiotown, On


WORD Spartanburieston. S.C. 5000 WJCW Johnson City, Tinn. 5000 KNPG S. Pittsburgh. Tenm. sood KRIO McAllen, Tox. 5000 KALL Salt Lako city, Utah 5000 WWRJ White River Junction

WRNL Rlehmond, \(\mathrm{Va}_{\mathrm{a}}\) W000 WHYE Roanoke. Va. l000d WHY Seattio. Wash. 1000 WDOR Sturgeon Bay. Wis. 1000 d

\section*{920-325.9}

CFRY Portage La Prairie, \(\begin{array}{lr}\text { CJCH Hallfax, N.S. } & 10000 \\ \text { CJCJ Woodstock, N.B. } & 1000\end{array}\) CKCY Woodstock, N.B. \({ }^{\text {CKI }}\) St, 1000 CKNX WIngham. Ont.
WWWR Russellyille. Ala 5000
KARK Little Roek. Ark. 5000 KVEC San Luls Oblspo Cal 1000 KREX Sra KLMR Lamar, Colo. 1000 WGST Atlanta. Gi, Fla. 5000 wVOH Astianta. Ga. KAHU Waiphau Hawali
WGNU Granite City, IIf WGMOK Mranite City, IIf. WBAA W. Lafayette. Ind. WTNw Whiteshurg ky WBOX Bogalusa. La WBOX Bogalusa. La WPTX Loxington Pk., Md. WMPL Hancock, Mich. KWAD Wadena, Minn. KRAM Las Vogas, Nev. KOLO Reno, Nov.
KQEO Albuquerque, N. Mex. WKRM Tronton. N. d WGHQ KIngston, N. Y. 1000
WIRD Lake Placld. N.Y 5000 d
WBBB Burlindton, N.C. 5000 d
WMNI Columbus, Ohio
WKVA Lowistown, Pa.
WJAR Providence. R.I.
KEZU Rapid CIty, S.Dak.
WLIV Livingston. Ten
KECK Odessa Tex
KTLW Texas City, Tex.
KXLY Spokane, Wash.
WMMN Falimont, W, Va.
930-322.4

940-319.0
CBM Montreal, Que. CJIB Vernon. B.C KOBY Tucson, Ariz. WINZ Mlaml, Calif WMAZ Macon, Ga. WMIX Mt, Vernon, I1t. WYLD Now Drleans, Ma,
WJOR South Haven, Mleh KSWM Aurera. Mo. KVSH Valentine, Nebr.
WFNC Fayettovila, N.C. KGRL Bend, Oreg.
WESA Charleroi, Pa.
WGRP Greenville, Pa. WIPR San Juan, P.R KIXZ Amarillo. Tox. KTON Balton, Tex.
KATQ Texarkana, Te \(950-315.6\)
CKNB Campbollton, N.B. CKBB Barrie, Ont. WRMA Montgomery, Ala KFSA Ft. Smith KFSA Ft. Smith. Ark KAHI Auburn, Calif. KIMN Denver, Colo.
WNUE Fi.Walton Sch. WNUE Ft. Walton Sch
WLOF Oriando, Fla.
WGTA Summerville, C
WGOV Valdosta Ga WGOV Valdosta, Ga KBOI Bolse, Idaho KLER Orofino, Idaho WAAF Chicago, Ili.
WXLW Indianapolis, ind. KOEL Oolwoin, Jowa KJRG Newton. Kans WBVL Barbourville, Ky.
WAGM Presqua Isle. Mal WORL Boston. Mass. WWJ Detroit. Mleh. WBKH H teiesbura, MInn KLIK Jefterson City, Mo. WBER Moncks Corner, N.C WBBF Rochester, N.Y WIBX Utica, N.Y. WPET Greensboro, N. WNCC Barnesboro WPEN Philadelohia. Pa WPEN Philadelphia. Pa, KWAT Watertown, S. Dak. WAGG Franklin, Tenn KDSX Denison, Tex. KPRC Houston. Tex. KSEL Lubbock, WX , KJR Seattle, Wash. WERL Eagle River. WIs. WKAZ Charleston, W.V. WKTS Sheboygan, Wis.
l000d

CFBC Saint John, N.B.
W.P. Ke. Wave Length

T 0000 CKWS Kingston, Ont 1000d WBRC Birmingham, Al 1000 WCVO Kodle, Alask wCVQ Kodiak, Alaska
KOOL Phoenix, Ariz KAVR Apple Valley, Callif. KNEZ Lompoc, Calif. WELI Now Haven, Conn. WGRO Lake City, fla. w JCM Sebring, Fla. WJAZ Albany, Ga. WRFC Athens, Ga,
KSRA Salmon, Idaho WDLM E. Moline, III. WSBT South Bend, Ind. KMA Shenandoah, lowa
WPRT Prestonsburg, Ky. KROF Abbevilie, La. WBOC Sallsbury. Md. WFGM Fitchburg, Mass.
WHAK Rogers City, Mich. KLTF Little Fails, MInn. WABG Greenwood, Miss. KFVS Cape Girardeau, M
KNEB Scottsbluff. Nebp KNEB Seottsbluff, Nobr. KWYK Farmington, N.Mox.
WEAV Plattsburg. N.Y. WAAK Dallas, N.C. N. WFTC Kinston, N.C. WWST Wooster. Ohio KGWA Enld, Okla KLAD Klamath Falis, Orog. WHYL Carlisle, Pa. WADP Kane, Pa.
WATS Sayre, Pa.


 WBMC MeMinnvilio. Tenn. KIMP Mt. Pleasant, Tex. KGKL San Angelo, Tex. KOVO Provo, Utah WDBJ Roanoke. Va. KALE Richland, Wash. WTCH Shawan
\(970-309.1\)

\section*{970-309.1}

50000
10000
CKCH Hull, Que. WTBF Troy, Ala. KNEA Jonesboro, A ark.

500
5000

50000
50000
50000
5000 d
5000 d
10000
.P. KCHV Coachella, Callf.

\section*{10000} 10000
10000
\(1000 d\) 1000 d
5000 d

\section*{1000
\(1000 d\)}


10000
5000
500 d
5000
5000

\section*{W
W
W}

\section*{K
W}

WWSW Pittsburoh. Preg.
WWSW Plttsburgh, Pa.
KASE Austin. Tex.
KNOK Ft. Worth.
WIVI Christiansted, Vex.
WYPR Danville. Va.
WBYA Waynesboro, V
KREM Spokano. Wash. WWYO Pinevilie. W.V WHA Madison, Wis.
WIGL Superior, Wis.

\section*{980-305.9}

CKNW New Westminster,
Bril. Columbla 10000 CFPL London, Ont. 10000 CKGM Montreal, Que CBV Quebec. Que. CHEX Peterboro. On
CKRM Regina. Sask \begin{tabular}{lr} 
CKRM Regina. Sask. & 5000 \\
\hline 0000
\end{tabular} WKLF Clanton, Ala. 10000 KINS Eureka. Callf. KINS Eureka. Callf. KFWB Los Angeles, Calle 500 d KFWB Los Angeles, Callf. 5000 WSUB Groton, Conn. WRC Washington. WOVH Gainesville, Fia. WTOT Marianna. Fla. WBOP Pensacola, Fla WLOD Pompano Beach, 1000 d WKLY Hartwell. Ga. 10000 WPGA Perry, Ga. 500 d
 WCUB Manitowoc. Wis.
WPRE Pralriedu Chis. 000 990-302.8 \(\begin{array}{ll}\text { CBW WInnlpog, Man. } & 50000 \\ \text { CBY Corner Brook, Nfld. } & 10000\end{array}\) WEIS Center, Ala. 250
1000 d \(\begin{array}{ll}\text { WWWF Faytto, Ala. } \\ \text { WTCB Flomaton, Ala. } & \text { S00d }\end{array}\) \(\begin{array}{ll}\text { KTKT Tueson. Ariz. } \\ \text { KKIS Plitsburg, Callf. } & 5000 \\ \text { KKU }\end{array}\) KKIS Plttsburg, Calif. \(\quad 5000\)
KGUO Santa Barbara, Callif. 1000 d \(\begin{array}{ll}\text { KLiR Denver, Colo. } & 1000 \mathrm{~d} \\ \text { WBZY Torrington. Conn. } & 1000 \mathrm{~d}\end{array}\) \(\begin{array}{ll}\text { WBZY Torrington, Conn. } & 5000 \\ \text { WFAB Mlaml, Fla. } & 5000\end{array}\) \(\begin{array}{ll}\text { WHOO Orlando, Fla. } & 10000 \\ \text { WDWD Dawson, Ga. } & 1000 \mathrm{~d}\end{array}\) \(\begin{array}{ll}\text { WGML Hinesvlits. Ga. } & 250 \mathrm{~d} \\ \text { KTRG Honolulu, Hawall } & 5000\end{array}\) WCAZ Carthage, Ill. \(\quad 1000 \mathrm{~d}\) KAYL Storm Lake, lowa \(\left.\begin{array}{l}\text { I000d } \\ 250 d\end{array}\right)\) \(\begin{array}{ll}\text { KRSL Russell, Kans. } & 250 \mathrm{~d} \\ \text { WIMR New Drleans. La, } 250 \mathrm{~d}\end{array}\) KRIR New Drleans. KRIH Raywlle, La.
WCRM Clare, Mich. 250 d
250 d 5000 K 5000 d
5000 d
 Southern Pines, N.C. 5000 d WTIG Gallipolis, Ohio lo00d
WRKT Massillon. Ohlo 250 d \(\begin{array}{lr}\text { WRKT Ablany, Oreg. } & 250 d \\ \text { WIBG Philadelphia, Pa. } \quad 50000\end{array}\) WVSC Somerset, Pa. \(\quad\) 250d
WPRA Mayaguez, P.R. \(\quad 10000\) WLKW Providence, R.I. 50000 \(\begin{array}{ll}\text { WAKN Alken, S.C. } & 1000 \mathrm{~d} \\ \text { WNOX Knoxvilie, Tenr. } & 10000\end{array}\) \(\begin{array}{ll}\text { WWAM Memphis, Tenn. } 1000 \mathrm{~d} \\ \text { KTRM Beaumont. Tex. } & 1000\end{array}\) \(\begin{array}{lr}\text { KAML Konedy, Tox. } & 2500 \\ \text { KNIN Wlenita Falls, } & 20000\end{array}\) \(\begin{array}{ll}\text { KNIN Wiehits Falls, Tox, } & 10000 \\ \text { KDYL Tooele, Utah } & 1000 \mathrm{~d}\end{array}\) WNRV Narrows, Va. 10004 \(\begin{array}{llr}\text { WANT Richmond, Va. } & \text { 1000d } \\ \text { WKLJ Sparta. WIs. } & 250\end{array}\)

\section*{\(1000-299.8\)}

CKBW Bridgewater, N.S. 10000 \(\begin{array}{lll}\text { WCFL Chicado Ili. } & 50000 \\ \text { KTOK Okla. City. Okis. } & 5000\end{array}\) KGRI Henderson. Tex \(\quad 250 d\) WHWB Rutland, vt Io00d WBNB Rutiand, Vt. KOA1O Seattlo. Wash Islands 1000 \(1010-296.9\)
\begin{tabular}{lr} 
CBX Caigary, Alta, & 50000 d \\
CFRB Toronto. Ont. & 50000 \\
KCAC Phoenix, Ariz. & 500 d \\
KVNC Winslow, Ariz. & 1000 \\
KLRA Little Rock, Ark. & 10000 \\
KCHJ Dolano. Callf. & 5000 \\
KCMJ Palm Spros.. Calif. & 1000 \\
KSAY San Fran., Calif. & 10000 d \\
WCNU Crestview, Fla. & 1000 d
\end{tabular} KSAY San Fran., Calli. I0000d
WCNU Crestriew, Fla. 1000 d WZRO Jacksonville Beach.
\(\begin{array}{ll}\text { WINQ Tampa, Fla, } & 50000 \mathrm{~d} \\ \text { WGUN }\end{array}\)
KATN Bolse. Idaho I000d KSMN Mason City, lowa lo00d KDLA DeRidder, La, 1000 d WSID Baltimore, Md. lo00d WMRT Lanslng, Mleh. \(\quad 500 \mathrm{~d}\)
WMOX Meridlan, Miss, \(\quad 10000\) KCHI Chlllicothe, Mo. 250 d KRVN Lexington. Nebr. 25000 d \(\begin{array}{ll}\text { WCNL Newport, N.H. } & 250 d \\ \text { WINS New York, N.Y. } 50000\end{array}\)

Kc. Wave Lengt WABZ Albermarle, N.C WELS Kinston, N.C. WIOI Now Boston, Ohio WUNS Lewisbure, Pa, HIN Gallatin, Tenn. WORM Savannah, Tenn. KBUY Amarillo, Tex. KOOA Houston; Tex. KAWA Waco, Tex WELK Charlottesville, \(\mathrm{V}_{\mathrm{a}}\). WMEV Marion, Va. WPMT Portsmouth, Va. 5000 d


\section*{1020-293.9}

KGBS Los Angeles, Calli. WCIL Carbondale, III KDKA Pittsburgh, Pa

\section*{1030-291.1}

WBZ Buston, Mass. KBZA Springfield, Mass. 1040-288.3
KHVH Honolulu, Hawall KIXL Dallas, Tex.

\section*{1050-285.5}

CFGP Grande Prairie. Alta. 10000 CKSB St. Bonlface, Man. CHUM Toronto, Ont. WRFS Alexander City WCRI Scottsboro, Ala. KVWM Show Low, Ariz KOFY San Mateo, Callf KWSO Waseo, Callif. KMO Lonamont, Colo. wivy Jacksonville, Fla WHBO Tampa, Fla. WRMF TItusville, FI WAUG Augusta, Ga WMNZ Montezuma, Ga. WD2 Decatur. III KNCO Garden City, Kans KLPL Lake Providence. KCIJ Shreveport, La. VPI VIlla Platte, La WQMR Sllver Sprg., Md. KLOH Pipestone, Minn. WACR Columbus, Miss SIS Sedalia, Mo. KLVC Las Vegas, Nev. WBNC Conway, N.H. WSEN Baldwinsville. N.Y. WSTS Massena, N.Y. WFSC Frankiln, N. C WLON LIncolnton, N.C. WWGP Sanford, N.C KFMJ Tulsa, Okla. KUBE Pendieton, Oreg. KEED Saringiteld, Oreg. BUT Butler, Pa. WSMT Smartasport, Pa KEN Killea, KLEN Killeen, Tex. KPLA Pialnview, Tex, KCAS Slaton. Tox. WGAT Gate City, Va. WBRG Lynchburg. Va KNBX KIrkland. Wash WCEF Parkersbura, W. WECL Eau Clairs. Wis. WIV Doustas, Wyo.

\section*{1060-282.8}

CFCN Caloary, Alta. KUPD Tompe, Ariz. KPAY Chico, Calif. WNOE New Orleans, La Mich. \(1000 d\) WHOF Canton. Nhio 1000 d WRCV Philadelphia

\section*{1070-280.2}

FAX Victoria. B.C. CBA Sackville. N.B. WAPI Birmingham, Ala. KNX Los Angelos, Calif. WIBC Indianapolis. Ind.
CFDI WIehita. Kans.
. 50000
\(1000 d\)
50000
10000
W.P.|Ke. Wave Length WMIA Arecibo, P.R. N.C. 1000 d

Ke. Wave Length KASM Albany, Minn. KRMS Osage Beach. Mo. KSEN Shelby, Mont, Mo KDEF Albusuerque, N. Mex.
WRUN Utica, N.Y.
W. \({ }^{\text {P }}\)

1000d Ke. Wave Length W.
1000 d WMDC Hazlehurst, Miss. 2
KOOd KBH Branson, Mo. 1000
000 KLPW Union, Mo, 1000 d
\(\begin{array}{lll}\text { WKBK Keene, N.H. } & 1000 a \\ \text { WGNY Newburgh, N.Y. } & 5000 \mathrm{~d}\end{array}\)
WGNY Nowburgh, N.Y. \(\quad 5000 \mathrm{~d}\)
WSOQ N. Syracuse, N.Y. 1000 d WSOQ N. SYracuse, N.Y. 1000 d
WKMT Kings Mtn.. N.C. 1000 d WREV Reldsville, N.C. 1000 d WENC Whiteville. N.C. \(\quad 1000 \mathrm{~d}\) \(\begin{array}{ll}\text { WEGAR Cleveland. Ohio } & 50000 \\ \text { WGRT Wak. }\end{array}\) WERT Van Wert. Ohio 250 d KBLY Goldbeach, Oreg, 10000 \(\begin{array}{ll}\text { KSLY Goldbeach, Oreg, } & 10000 \\ \text { KAPT Salem. Ore. } & 1000\end{array}\) WAPT Salem, Ore.
WRIB Providence. R.I. \(\quad 1000 \mathrm{~d}\)
WALD Walterboro. S.C. \(\quad 1000 \mathrm{~d}\)
WFWL Camden, Tonn, \(250 d\)
WCPH Etowah, Tenn. 1000 d
\(\begin{array}{ll}\text { WHEY Millington, Tonn. } & 2500 \\ \text { KVLL Livingston, Tex. } & 250 \mathrm{~d}\end{array}\)
\(\begin{array}{ll}\text { KYLL Livingston, Tex. } & \text { 250d } \\ \text { KZEE Weatherford, Tex. } & 250 \mathrm{~d}\end{array}\)
WLSD Big Ston Gap. Va. 1000 d WFAX Falls Chureh, Va. 5000 d KASY Auburn, Wash. \(\quad 250 \mathrm{~d}\)
KOZI Chelan. Wash. WRNE Wis. Rapids, wis. 500 d

\section*{\(1230-243.8\)}

\section*{CFCW Camrose. Alta. 10000}

CHFC Churchili. Alta
CFIKL Scheffervilie. Que. CFGR Gravelbourd. Sask. CFYT Dawson City, Yukon T. 100 CFPA Port Arthur. Ont. 1000 CKLD Thetford Mines. Que. 2 VOAR St \(\begin{array}{lr}\text { VOAR St. John's. Nfld. } & 100 \\ \text { CKVD Val D.Or. Que. } & 1000\end{array}\) \(\begin{array}{ll}\text { CKVD Val D'Or. Que. } & 1000 \\ \text { WAUD Auburn. Ala. } & 1000\end{array}\) WBHP Huntsville, Ala. \(\quad 1000\) \(\begin{array}{ll}\text { WNUZ Talledega, Ala, } & 250 \\ \text { WTBC Tuscaloosa, Ala. } & 250\end{array}\) \(\begin{array}{ll}\text { WTBC Tusealoosa, Ala. } & 250 \\ \text { KIFW Sitka. Alaska } & 250\end{array}\) KSUN Bisbee, Ariz. \(\quad 250\) \(\begin{array}{ll}\text { KAAA Kingman. Ariz. } & 250 \\ \text { KRIZ Phoenix. Ariz. } & 250 \\ \text { KATO }\end{array}\) \(\begin{array}{ll}\text { KRIZ Phoenix. Ariz. } & 250 \\ \text { Kafford, Ariz. } & 250\end{array}\) KFPW Ft. Smith, Ark. \(\begin{array}{ll}\text { KGEE Bakersfold, Calif. } & 250 \\ & 500\end{array}\) KWTC Barstew, Callf. 1000 KUSS Bishop. Calif KXO El Centro, Calif.
KDAC Ft. Brago. Callf.
KGFJ Los Anueles, Calif \(\begin{array}{ll}\text { KPRRL Paso Robles, Calif. } \quad 250 \\ \text { KPR } & 1000\end{array}\) \(\begin{array}{ll}K R O G \text { Redding. Calif. } & 250 \\ K W G \text { Stockton. Calif. }\end{array}\) \(\begin{array}{ll}\text { KEXO Grand Junc.. Colo. } & 250 \\ \text { KBRR Leadvilie, Colo. } & 250 \\ \text { KDZA Pueblo Colo } & 250\end{array}\) KDZA Pueb KGEK Sterling. Colo \(\begin{array}{lr}\text { WINF Manchester. Conn. } & 250 \\ \text { WGGG Gainesville, Fla. } & 1000 \\ \text { WON }\end{array}\) \(\begin{array}{ll}\text { WONN Lakeland, Fla. } 250 \\ \text { WMAF Madison, Fla. } & 1000\end{array}\)
50000
WSBE N
yrn Florida 1000 \begin{tabular}{l|lr} 
& WNVY Pensacola. Fla. & 250 \\
1000 & WCNH Quincy. Fla. & 1000 \\
1000 C & WJN W, Palm Beach. Fla. 250 \\
WBIA Augusta, Ga
\end{tabular} 10000 d 1000 d \(250 d\)
50000 WBLJ Dalton, Ga. WXLI Dublin, Ga. \(\begin{array}{lr}\text { WSOK Marietta, Ga. } & 250 \mathrm{~d} \\ \text { WSY } & 1000\end{array}\) \(\begin{array}{lr}\text { WAYX Waycross, Ga. } & 250 \\ & 1000\end{array}\) \(\begin{array}{ll}\text { KBAR Burley. Idaho } & 250 \\ \text { KORT Granoeville, Idaho } & 250\end{array}\) 10000
10000
1000
10000
10000
10000
1000
1000 d
1000 d
1000
1000 d
1000 d
250 d
1000 d
1000 d
250 d
ro00d
\(1000 d\)
1000 d
1000 d
1000 d
1000 d
250 d

\section*{250 d
1000 d
1000 d}

1000 d
500 d
250 d
250 d
1000 d
\begin{tabular}{l|}
1000 d \\
1000 d \\
1000 d
\end{tabular}
\(\begin{array}{lll}1000 \mathrm{~d} \\ 1000 \mathrm{~d} & \text { WIKB Irand Rapids. Mileh. } 1000 \\ 100 \mathrm{Miver} \text {, Mieh. } & 1000\end{array}\)
250 d W WSOC Laneer. Mith. MIt. Ste. Mario. Mleh. 1000
\begin{tabular}{l} 
250d \\
250 d \\
250 d \\
WSTR Sit. Ste. Mario. Mleh. 1000 \\
\hline
\end{tabular}
\(250 d\) WKLK Cloquet, MInn. 1000
250 d KGLK Cloquet, Ninn. Minternat'I Falls. Minn. 100
\(\begin{array}{ll}\text { KGHS Internat' Falls, MInn. } 100 \\ \text { KYSM Mankato. Minn. } & 250 \\ \text { KMRS Morrls, Minn. } & 250\end{array}\)
\begin{tabular}{l} 
KTRF Thief Riv. Fils., Minn. 250 \\
KWNO Winona, Minn. \\
\hline 000
\end{tabular}

162 WHITE'S RADIO LOG WCOP Boston, Mass. With. 5000

\section*{WHSY Hatte Lengłh} WSSO Starkville. Miss. WAZF Yazoo City. KLWT Lebanon. Mo KNCM Moberly, MO. KBM Bozoman, Mont. KXLO Lewiston, mo KTNC Falls Clty, Nebr. KELY Ely. Nov, Nev, KDOT Reno, Nov. WTSV Claremont, N.H. WCMC Wildwood, N.J. KOTS Deming. N.MeX KYVA Gallup, 'N.Mex KFUN Las Vegas. N.Mex. KRSY Roswell. N.Mer WNIA Cheektowaga, N.Y WENY Elmira, N.Y. WHUC Hudson, N. WFAS White Plalns. N.Y. WSKY Asheville. N.C. WMFR Fayottevilio. N.C. WISP Kinston, N.C. WNNC Newton. N.C. WCBT Roanoke Rap., N.C. KDIX Diekinson. N.Dak. WCPO CIncinnati, Onlo WIRO Ironton, ohio WTOL Toledo. Ohio KADA N. of Ada, Okla. KIAL Astoria, Oreg. KRNS Burns, Orog. KGRO KYJC Atedford, Ores. Kalk Lakeviow Orea. WBVP Beaver Falls, Pa.
WEEX Easton. Pa. WCRO Johnstown, Pa WBPZ Lock Haven, \(\mathrm{Pa}_{\mathrm{a}}\)
WTIV Titusville, Pa . WNIK Arecibo, P.R. WERI Westerly, R.I. WNOK Columbla. S.C.C. KISD Florence, S.C. WAKI MCMInnvilie. Tenn. KSIX Corpus Christi. Tex. KDLK Del R1o. Tax. KERV Kerrvilio. Tex KLVT Levelland, Tex. KOSA Odessa, Tex. KHHH Pampa. Tex. KSET Sulphur Spros., Tex, K KMUR Maco, Tixtah KMAR Price, Utah WBBI Abingdon, Va. WCFV Clifton Forge, \(V\) a. WFVA Fredaricksburg, Va KWOR Norfolk, Ya. KLYK Spokane. Wash. KREW Sunnyside, Wash WLOG Logan. W.Va. WTAP P,arkersburg, W.Va. WHBY Apploton, WIs. wCLO Janesville, Wis WHVF Wausau. Wis.

1240-241.8

\section*{CFLM La Tuque Que.} CFPW Prince Rupert, B.C. CJAV Prine Alberni. B.C CJCS Stratford. Ont.
CJRW Summerside. P.E.I 1000 CKBS St. Hyaclnthe, Que. CKLS LaSarre. Que. WEBJ Brewton. Ala. WULA Eufaula, Ala, WARF Jasper, Ala.
K20w So of Glob Ariz. K20W So. of Globe, Ariz. KVRA Arkadelohla. KWAK Stuttgart, Ark. KMBY Monterey, Callf. KPPC Pasadena, Calif. KROY Saeramento, Catif.

California 10000
-250
100
250
250
25
25
25
100
10
250
250
25
250
250
50
100
25
25
25
                        250
            .. Tex.
            1000
            100

Wave Length

 O \begin{tabular}{l}
V \\
M \\
Mo \\
T \\
\hline
\end{tabular} Co CO Ch
 K Fort M
MB Melo
OY St Au
HB Fitze
UN Galne
AG LaGra o. Fla. \begin{tabular}{l|}
000 \\
250 \\
000
\end{tabular}
 1000
250
1000
\[
\begin{array}{c|c}
000 & K \\
250 & K \\
000 & K
\end{array}
\]
35
35
88
18
18
18
83
83
옹 ..... -
 WFKE Pikovillo, Ky.KASO MInden, La,WCOU Lowiston, MalneWCEM Cambridge. Md.WJEJ Hagerstown, Md.
WHAI Greenfeld, Mass.
WOCB W. Yarmouth. Mass.WATT Cadillac. Mieh.WCBY Cheboyg. Min. MichWJPD ishpoming, wich1000
1000 d
1000WMFG Hibbing. Minn.WJON St. Cloud, Minn.WMPA Aberdeen. Miss.
WGRM Greenwood. MIss.WGCM Gulfport, Miss.WMis Natehez Miss.KFMO Flat River. Mo.KWOS Joferson CityKNE Jopin, Mo.KNEM Nevada. Mo.
KBMY Blllings, Mont.KLTZ Glasgow, Mont.KBLL Helena.' Mont.KFOR LIncoln. Nebr.KOOY North Platte. Nobr.KELK Elko. Nev.WSNJ Bridgoton, N.J.
KAVE Carlstad. N.Mex.KAVE Carlssad. N.Mex.
    KCLV Clovls, N.M NX.
WGBB Frreport. N.Y.
WGYA Goneva, N.
    WGBE Freeport. N. N.
            1000
1000
        WGVA Geneva, N. \({ }^{2}\).
WJTM Jamestown, N.Y.
        WYM Lamestown. N.Y.
WVOS Llberty. N.Y.
WNBZ Sarana Laly.
        WNBZ Saranac Lake, N.Y.
        WSNY Schonectady, N.Y.
WATN Watertown, N. \(\mathbf{Y}\).
        WATN Watertown, N.Y.
WPNF Brevard, N.C.
        WPNF Brevard, N.C.
WIST Charlotte, N.C.
        WCNC Elizaboth City, N.C.
        WJNC Jaeksonville, N.
        WRAL Raleigh, N.C.
        KDLR Devlls Lake. N.Dak
        WBBW Youngstown, Ohio
WHIZ Zanesville. Unio
        WHIZ Zanesville, Ghi
        KVSO Ardmora, Okla.
        KBEL Idabel Okla.
        -KOKL Okmulgee. Okia,
        KFLY Corvallis, Oree.
        KKID Pendleton, Oreg.WW
WWON Woonsocket. R.IWKOK Nowberry, S.C
WOXY Sumter. S.C.WOXY Sumter, S.C.WBEJ Elizabointon, Tenn.
WEKR Fayotteville, Tenn.WBIR Knoxville. Tonn.WKDA Nashville. Tenn.
    WENK Union City, Tenn.
                    WENK Anion Cily.
                    KEAN BROWM TH, T
            d. Tex
        KORA Bryan. Tex.
KOCA Kllooie, Tex.
        KSOX Raymondville, Tex.
        KCKG Snora. Tex
            KXOX Swostwater. Tex.
            00 KXOX Swoetwater. Tex.
        WSKI Montpelier, Vt.
        WROV Roanoke.
            WTON Staunton, Va.
        KXLE Ellensburgh. Wash.
        KGY Olympla, Wash.

KSUE Susanvillo, Callf.

1000 WTIP Charleston, W, Va,


Kc. Wave Length WMBD Auburn, N.Y. WENT Gloversvilio, N. Y WUSJ Loekpert. N. Y WAL Madleat N.Y WARY Mlattsburgh, N.Y. WJRI Lenoir, N.C. WTSB Lumberton, N.C. W00w Grasivilic. WGNI WIImIngton. N.C. WAIR Winston-Salom, N.C. KGPC Grafton, N.Dak WOUB Ashland, Ohlo WIZE Sprinofiold oni WSTV Steubenvilie, Ohio KIHN Hugo, Okla. KDCY Okla. CIty. Okla. KOCY Ska, Clty, Okis. KWVR Enterprise, Orep. KIHR Hood Rlver, Ores.
KFIR North Bend, Oreg. wCVI Connelisvilio. Pa, WSAJ Grove Clty. \(P\) WHAT Philadefor WRAW Roding, Pa,
WTRN Tyrone, PA. WBRE Wlikes. Barre, Pa. WGPA WIllamsport. PA WOKE Charleston. P.R WRHI Roek HIII, S.C. WSSC Sumter, S.C. KIJV Huron. S.D. KRSD Rapid Cily, S.Dak. WBAC Cleveland. Tonn WGRV Greenevilio, Tenin. WKGN Knoxvilie, Tonn. WCDT WOmphis, Tenn. KWKC Abllene. Tex. KTSL Burnott, Tex. KSET EI Paso. Tex. KLBK Lubbock. Tox. KPDN Pampa. Tox
KOLE Pori Arthur, Tox. KTEO San Angelo, Tox. WSTA Charlotte Amalie, V.I. WKEY Covington, Va. WJMA Drange, Va. KAGT Anacortes, Wash, KPKW Pasco, Wash. KMEL Wenatchee. Was WHAR Clarkshurg. W.Va. WEPM Martinsburg, W.Va. WMON Montoomery wiva WOVE Weleh, w.Va. WLDY Ladysmith, Wis. WRIT Mllwaukee. Wls.
KYCN
Wheatland, Wyo. KYCN Wheatland, WYo
KWOR Worland. Wyo.

\section*{1350-222.}

CHDV Pembroke. Ont. CJLM Jollette, Que. CKEN Kentrilie, N.S. WELB EIba, Ala.
KıYD Gadsden, Ala. KCKC San Bernardlno Callt KSRO Santa Rosa, Calif. KGHF Pueblo. Colo. WNLK Norwaik, Conn WEZY Cocoa WDCF Dade Clty, Fla. WRSW Blackshoar, Ga.

KRLC Lowiston, Idaho WJBD Salem. ill
WiOU Kokomo, Ind KANT Des Moines, Lowa KMAN Manhatian, Kans, WLOU Loulsvilio, Ky, WSMB New Orieans; wh Howell, Mith KDIO Ortonvilie. Mİnn. WGMP Pine City, Minn. WKOZ Koselusko. Miss. KCHR Charleston, Mo. KBRX O'Nelli, Nebr, WLNH Latonla, N.H. WHWH Princoton, N.J KABA Albuquerque. N.M. WCBA Corning, N. Y. WRNY Rome. N. Y.
WBMT Black Mountaln
W WHIP Mooresville. N.C. WLLY Wlisen, N.C.
KQDI Bismarek. N.D.
KADI Bismarck. N.D
WCSM Celina, onl
WCHI Chillicothe Ohl
KRHD Ouncan, Okla.
Ga. 5000 d
\begin{tabular}{c} 
\\
\\
\\
\\
\hline
\end{tabular}
a
W.P.|Kc. Wove Length
 KTLQ Tahlequah, okla. KRVC Ashland, Ores. KLoD Corvalis, Or WDAR Darlington, S.C. WGSW Greenwood, S.C. WRKM Carthage. Tenn KCAR Clarksvillo,
KYXJ Jasper, Tex. KCOR San Antonio, Tex. WBLT Bedford, Va, WFLS Frodericksbur WAVY Portsmauth, Va.

\section*{1360-220.4}

\section*{Ww w B Jasper, Ala} WLIQ Mobilo, Ala. AIA WELR Roanoke, Ala. KRUX Glondalo, ArIz. KLYR Clarksvilio, Ar KFFA Helena, Ark.
KFIV Modesto, KFIV Modesto, Calif. KGB San Dlego, Callf. KDEY Boulder, Colo. WDRC Harttord, Conn.
WDBS Jaeksonville, Fia WKAT Miami Beath, Fia. WSFR Sanford, FIa. WINT WInter Haven, Fis.
WAZA Bainbridge. Ga. W LAW Lawrencevilite. Ga WMAC Metter, Ga. WIYN Rome. Ga.
WLBK DoKalb, III. WLBK Dokalb, III. WGFA Watsoka, III \(\qquad\) KXGI Ft. Madison, lowa
KSCJ Sloux Clty. lows KSCJ Sloux Clity, WFLW Monticello, Ky. KDBC Mansheld. La. KVIM Now Iberia, La. KTLD Taliulah. La.
WEBB Dundalk. Md. WLYN Lynn, Mass. WWRO Caro, Mich. WKMI Kalamazoo, Mleh.
KLRS Mountain Grove, Mo KWRY MeCook, Nebr.
WNNJ Newton, N. J. WWBZ Vineiand, N.J.
WKOP BInghamton, N, \(Y\) WMNS Olean. N.Y. WCHL Chapel Hili, N.C. KEYZ Willistonf N.D. WWOW Conneaut. Ohio K UIK Hillshoro, Oreg. WPQR MeK easport. Pa. WPPA Pottsvillo. Pa, WELP Easloy, S.C. WNCM Lancaster, S.C. KRAY Amarillo, TeX. KACT Androws, Tex. KWBA Baytown, Tox. 1000
1000 1000 1000
0000 d 000
1000 d
5000
1000 d
\(\square\) 5000
5000
1000 KOL Ft. Worth. Tox. WHBG Harrisonbur KFDR Grand Coulee., Wash. KMO Tacoma, Wash. WMOV Ravenswood. W.Va WBAY Greon Bay, Wis.
WISV Virougua, WISV Virouqua, WIs KVRS Roek Sprlings, Wyo. - \(1370-218.8\) CFLV Valleyn, Ala. KTPA Prestott, Ark KEEN Corona, Calf. KGEN Tan oss, Call
WGEN Tulare, Calh. WKMK Blountstown, Fia. WKOS Ocala, Fla. WCOA Pensacola. Fla.
WAXE Vero Beach. Fla 5000
500 d 5000 d WBGR fesup, Ga. 10000 WFDR Manchester, Ga. 500 WPRC Lineoln. Ill. 1000 d WTTS Bloomington. Ind. \(1000 d\) WGRY Gary, Ind. 5000 d KDTH Dubuque, Iowa
1000 d KGNO Dodoe Clity Kans 1000 K
1000 KGNO Dodoe Clity, Kans. \(1000 d\)
5000 d
WGLN Iola, Kans. 5000d
5000
WTKH Grayson, Ky.
Wompkinsvilie, Ky. WTKY Tompkinsville,
KAPB Marksville. La. KAPB Marksville. La.
WMHI Braddocks Hts.
WKIK WKIK Leonardtown. Md.
WGHN Grand Haven Mich. WGHN Grand Haven, Mich KSUM Fairmont. Minn. 000d 1000 d 500 K
5000
KCRT Boonvilite. MO.
KCR Caruthersyill \(500 d\)
W.P.
1000 d
1000 d
1000 d
5000
1000 d
1000 d
1000 d
500 d
1000 d
5000
1000 d
500 d
5000 d
5000
5000 d

 W.P.
500 d
5000
1000 d
5000 d
1000 d
5000
1000
1000
1000 d
1000 d
1000
500 d
5000
1000 d
1000 d
1000 d
1000
500 d
1000 d
1000 d
5000 d
5000 d
1000 d
1000 d
5000 d \(K\)
\(\mathbf{K}\)
\(\mathbf{W}\)
 WFMJ Youngstown, Ohis
KCRC Enid, Okla. KSLM Salom, Dris. WRSC Sancaster, Pa. \begin{tabular}{c}
1000 \\
1000 \\
1000 \\
1 \\
1 \\
1 \\
\\
\\
\hline
\end{tabular} D
1000 d

\section*{. -} 1000 d
1000 d
500 d 500d KSBW Sallinas, Calli.
1000 d KFLJ Walsenbura Colo. 500 d
1000 d 1000 d 5000 500 d 1000d 1000 d 500 d 5000 d
1000 d
5000
5000 1
\[
\begin{aligned}
& 1000 \mathrm{~d} \\
& 1000 \mathrm{~d} \\
& 000 \mathrm{~d}
\end{aligned}
\]
\[
\begin{aligned}
& 1000 \\
& 5000
\end{aligned}
\]  100 d
5000
5000
500 d
000
500
100
1000
1000
1000
500
1000
100
100
5000
1000
5000
100
500
1000
1000
8000 5000
500 d
000 d
1000
1000
000 d
000 d
500 d
000 d
1000
1000
5000
000 d
000 d
500 d
000 d
800
1000 \(1000 d\)
1000 0\(1000 d\)
1000
\(500 d\)
1000
5000
1000 d
500 d
5000 d
5000
1000 d
5000
1000 d
1000 d
1000 d
5000
1000 d
5000
5000
500 d
5000 d
1000 d
1000 d
d.
500 d
1000 d
500 d
1000
1000 d
1000 d
1000 d
5000
500 d
\begin{tabular}{l|l}
\(500 d\) & KAWL York. Nabr. \\
250 & WFEA Manchester. N.H.
\end{tabular}

Re. Wave Length W.P.|Kc. Wave Length KMML Marshalt. MIIn. WHLB virginia, Minn. WBIP Booneville, MIss WFOR Hattlesburg, Miss. WRSC Jackson, Miss. KFRU Columbia, Mo KJCF Festus, MO. KSIM Sikeston, KSIM Sikeston, MOO.
KTTS
Springneld, Mo. KXGN Giendiye. Mont. kCOW Alilance, Nebr. KLIN Lincolne Nebr. KWNA Winnemucta, Nov. WBRL Berlin, N. H. WTSL Hanover, N.H. KTRC Santa Fo. N.Mex.

\section*{KTNM Tucumeari, N. Mexico}
wONO Pleasantilile. Mex. WABY Albany, N.Y. WSLB Ondensburg. N.Y. WBMA Beautort, N.C. WGBG Greensboro. N.C. WSIC Statessville, N.C. WLSE Wallace. N.C. WHCC Waynesilili, KEYJ Jamestown, N.Dak WMAN Mansfield, Ohio KWON Bartlesvilio Onio KIMC McAlester. Okla. KNOR Norman. Okla KNND Cottage Grove, Ores. WEST Easton, Pa WHGB Harrisburs. Pa. WKBI SS. Marys, Pa.
WICK Seranton, Pa. WRAK Willams port, Pa WCOS Columbia. S.C. WGTN Gieargotown, S.C. WJZM Clarksvillo, Tonn. WHUB Cookevilie, Tenn. WLSB Copper Hill, Tonn WHAL Shelbyvillo, Tenn. KRUN Ballinger, Tox. KBYG Big Spring, Tex. KUNO Corpus Christl. Tox KiLE nr. Galveston, Tox.
KGVL Greonville. Tex. KGVL Greonvilie. Tox. KIUN Pecos. Tex. KEYE Perryion, Tex KVOP Plalnview, Text
KDWT Stamford, Tex, KDWT Stamford, Tox KTEM Temple. Tox. KvoU Uvalde, Tex. KDOT Burlington \(V t\) WHHV Hillsvilte, \(V\) a. WHIH POrtsmotion. Va. WINC Winchester, Va. KRSC Othello, Wash KTNT Tacoma Wash WBOY Clarkesburg, W.Va. WRON Ronceverte, W.Va WSPZ Sponcer, W.Va WKTH WIlliamson, w.Va WATW Ashland, Wis. WBIZ Eau Claire, Wis wDUZ Green Bay Wis WRDE Roedsburg. Wis WRIG Wausau, Wis. KODI Cody, wyo.

\section*{\(1410-212.6\)}

CFUN Vancouver, B.C. CHLP Montreal, Que. WALA Moblle, Ata. KTCS Fort Smith, Ark KERN Bakersfield, Calif. KKOK LOmpor ali KMYC Marysville, Calif. KCAL Redlands, Callf. WPOP Hartford, Conn. WMYR Fort Myers WBIL Fort Myers, Fla WRFB Tallahassee, Fla WRIX Griffin, Ga. WSNE Cumminos, Ga WDAX McRae, Ga WRAQ Rome, Ga.
WTIM Taylorville, ill. 250
1000
1000
 1000
250
KQV Pittsburgh, Pa. KQV Pittsburgh, P
WPCC Clinton, S.C. WYMB Manning, S.C. WCMT Martin, Jenn.
KBUD Athens, Tex. 1000 KBUD Athens, Tex 250 KBAN Bowis, Tex. \begin{tabular}{c|c}
2500 & KVLB Cleveland. T \\
250 & KXIT Dalhart, Tex.
\end{tabular} KADO Marshall, Tex
KRiG Odessa. Tex. 50 KRIG Odessa. Tex, KBAL San Saba, Tex,
KNAL Vletoria. Tex.
WRIS Roanoke, Va. WRIS Roanoke, Va.
WKBH LaCrosse. Wls.
KWYO Sheridan, WYo. \begin{tabular}{c|c}
250 & KWYO Sheridan \\
2000 & \(1420-211.1\)
\end{tabular}
250 CKPT Peterborough, Ont. CJMT Chicoutimi, Que. WACT Tuscaloosa, Ala.
KHFH Sierra Vista, Arlx, KPDC Pocahontas, Ark.
KSTN Stockton, Calif. WLIS Old Saybrook, Conn.
WBRD Bradenton, Fla. 00 W日RD Bradenton, Fla. W DEFH Selray Beach, Fla. WRFB Tallahassee. Fla.
WAVO Avondale Estates, WRBL Columbus, Ga, WLET Toccoa, Ga. WINI Murphysboro, Ill.
WIMS Alichigan City, ind WIMS Alichigan City, Ind.
WOC Davenport, lowa KJCK Junction City,
WTCR Ashland, Ky. WHBN Marrodsburg, Ky WVIS Owensboro, Ky. kif thaitit him WBSM New Bedford, Mass WBEC Plitsfield. Mass
WAMM Filnt, Mich. WKPR Kalamazoo, Mich KTOE Mankato. MInn. WSUH Oxford, Miss. WQBC Vieksburg, Miss 00 KBTN Neosho, MO. 50 K000 Omaha, Nebr. 50 KSYX Santa Rosa, N, Mex. 10 1000
1000 1000 WLNK Newark, N.Y. Yeekskili, N. Y.
1000 WMYN Mayodan 250 WGAS S. Gaston. N.C. 1000 WVOT Wilson, N.C. 1000 WHK Cleveland. Ohie 000 KTIS Mobart, Okla. 1000 KYNG Caos Bay, Oreg. WCOS Coatesvilie. Pa WCED DuBois, Pa. WCRE Choraw, S.C 00 KABR Aberdeen, S.D. WKSR Puiaski, Tenn
KFYN Bonham, Tex.
10000
10000
5000
500 d
10000
10000
5000
5000

Kc. Wave Length
 WTSA Brattleboro, Vt \({ }_{\text {WFTR }}\) WENZ Hiohland Springs, \(V\) a. WMVA Martinsville. \({ }^{\text {Wa}}\). KBKW Aberdeen, Wash KCLX Colfax. Wash.
KANP Port Angeles. WPAR Parkersburg, W.Va WFIZ Fond du Lac. Wis. WPFP Park Falls, WIs. WRCO Richland Center, Wis: KBBS Butalo, Wyo.
KVOW Riverton. Wyo.

\section*{1460-205.4}

CJOY Guelph, Dnt. CJNB N, Battleford, Sask. WPM Cullman. Ala. K2OT Marlanna. Ark. KTYM Inglowood, Calif. KDON Salinas, Calif. KYSN Colo. Spros., Colo. WBAR Bartow, Fia, WZEP DoFunlak Springs. WMBR Jaeksonville, WROY Carml. Ill. WIXN Dixon. III. WKTL Rantoul, IIA. WOCH North Vernon, Ind. KSO Des Moines. low WRVK MI. Vernon, Ky WAIL Baton Roupe, La. KBSF Springhill, La WEMO Easton. Md. WBRN Bis Rapids. Mith. WPON Pontiac, Mich. WELZ Bolzoni. Miss. KADY St. Charles. Mo. KEND Las Vogas, Nev. WVOX Now Rechelio. WHEC Rochester. N.Y. N. N.C. WRKB Kannapolls. N.C. WBNS Columbus. Dhio KELR EI Reno, Okla. KROW Dallas, Oreg. WMBA Ambridge. Pa, WCMB Marrishurg. Pa. WBCU Union. S.C. WJAK Jakson, Tonn. WEEN Lafayette. Tonn, KLLL Lubboek. Tex. WACD Waco. Tex. WPRW Manassas \(V\) Va
WRAD Radford. Va. WLPM Sutiolk. Va.
KCOI KIrkland, Wash. KIMA Yaklma. Wash. WBUC Buckhannon, W.Va. WRAC Racine, Wis,

\section*{1470-204.0}

CHOW Welland. Onfarlo CFOX Pointe Claire, Que. WBL Everoroen, Ala. KZNG Hot Sprinos. Ark.
KBMX Coalinga, Calli.
KXTY Palmdate, Calif.
WMMW Meriden. Conn.
W POM Pompano Beach, Fiar 5000 1000 1000 250
250
250
25
2
100
10
10
2
2
2
2
10
2
2
10
10
2
2
250
250
1000
1000
1000
250
1000
250
250
1000
1000
1000
250
250

5000
500 d
5000 d
5000
5000
000 d
10000
10000 1
1000 d
1000 d
\(\begin{array}{r}1000 \mathrm{~d} \\ .1000 \\ \hline\end{array}\)
1000 d 1
5000
1000 d
500 d . 50 \(\begin{array}{ll}5000 \\ 500 \mathrm{~d} \\ & \mathrm{~K} \\ \mathbf{W}\end{array}\) 5000
500 d
500 500
1000
500 d 1000 d
1000
W.P.|Kc. Wave Length W.P.

1000 WRBB Tarpon Sprgs., Fla. 5000 d

5000 WAPG Arcadla.' Fla.
5000
WTHR Panama Beach. Fla
 10000 WROW Aususta, Ga. 1000 WGSB Geneva, ill. 1000 WTHM Tersey Haute. Ind. 1000 d
5000 d
WRSW Warsaw. Ind.
KEE 5000d KBEA Mission, Kans. 1000
5000
KLEO Wichita. Kans.


1000
500 W
WIDS Tawas City. Mleh.
5000 WYSI Ypsilantl. Mich.
1000 KACX SUstin. M1nn. \begin{tabular}{r|rl}
5000 & KGCX Sidney, Mont. \\
5000 d & KLMS Lineoln, Nebr. \\
KWEW Hobbs, N. Mox. \\
1000 d & WLEA Horneli, N.Y.
\end{tabular}
500d WLEA Horneeli, N. Y. WHOM NEw YorX, N.
WH.


1000 d


Wove Length KFA Lakewood, Wash.
KVAN Vaneuver. Wash.
WISM Madlson. WWIs.
KRAE Cheyenne, Wyo.

\section*{1490-201.2}


W000. 5000 d
1000 d 1000 d

250
100
1000 CFRC Kingston. Ont.
CKCR Kitchener, Ont. CKBM Montmagny, Que. WANA Decatur, Ala. WRLD ecatur Ala. WRLD Lanott, Ala. KYCA Proscott, Ariz. KAR Tucson, Ariz.
KXAR Hope. Ark. KTLO Mtn. Home, Ark. KORS Paragould, Ark. KOTN Pine Bluf. Ark. lo00d KWAC Bakersfold, Calif.

\section*{KPAS Benninq, Callf.
KBLA Burbank, Calif.} KICO Calexico. Callf.
 WOPI Bristol, Tonn. WOXB Chatianooga, Tonn.
WROL Fountaln City, Tonn. WJJM Lewlsburg. Tenn. WOXL Lexington, Tonn KNOW Austin. Tex. KBEL Beovilie, Tox. KHUZ Borger. Tox. KNEL Brady, Tex.
KSAM
Huntsville. Tox KVOZ Laredo. Tox.
KZ2N Littiefield, Tex. KPLT Paris, Tax. KGKB Tylor, Tox.
KVWC Vernon. Tox. KVOG Ooden, Utah WKVT Brattioboro, Vt.
WIKE Newport. Vt. WIKE Newport. Vt.
WCVA Culpeper.
Wa WVEC Hampton, Va WAYB Waynesboro, Va.
KBRO Bremerton. Wash. KLOG Kolso, Wash. KENE Toppenish. Wash,
KTEL Walla Walla, Wash. KTEL Walla Walla, Wa
WTGR Charlesfon, W,Va. WTCS Fairmont. W.V. WLOH Prineston,
WGEZ Beloit. Wis. WLCX LaCrosso. Wis. WIGM Modford, Wis. WOSH Oshkosh, Wis \(\quad 1000\) \(\begin{array}{lr}\text { WOSH Oshkosh. Wis. } & 1000 \\ \text { KIML Gillette, Wyo. } & 250 \\ \text { KLME Laramle wiyo } & 100\end{array}\) \(\begin{array}{lr}\text { KLME Laramlo. Wyo. } & 100 \\ \text { KRTR Thermopolls, Wya. } & 250\end{array}\) KRTR Tharmopolls. Wya. \(\quad 250\)
KGDS Torrington, Wyo. \(\quad 1000\)

\section*{\(1500-199.2\)}
\begin{tabular}{|c|c|}
\hline CHUC Port Mopo. Ont. & 10 \\
\hline KXRX San Jose, Callf. & 5000 \\
\hline WTOP Washington, O.C. & 50000 \\
\hline WKIz Koy Wost, Fla. & 250 \\
\hline WJBK Detrolt. Mleh. & 10000 \\
\hline KSTP St. Paut. Minn. & 50000 \\
\hline KPIR Eugene. Dre. & 10000 d \\
\hline WMNT Manatl, P.R. & 250 \\
\hline KTXO Sherman. Tex, & 250 \\
\hline KANI Wharton, Tex. & 500 \\
\hline
\end{tabular}

\section*{1510-199.1}


\section*{\(1520-197.4\)}

\section*{KGHT Hollister, Callf. \(\quad 500\)
KACY Port Hueneme. Callf. 10000 KACY Port Hueneme. Callf.
WGNP Indian Rocks Beach.} WIXX Dakland Park, Fla. I000d
W I WHOW Clinton. IH. WLUV Loves Park. Iff. WSVL Shelbyville. Ind. KSIB Creston, lowa WRSL Stanford, Ky. KXKW Lafayotto. Li \(\begin{array}{lr}\text { WKBW Buffalo. N.Y. } & 5000 \\ \text { WFY } & 5000\end{array}\) WFYI Mineola, N.Y. 5000000 KOMA Okla, City, Okla. 50000
KGON Oregon Clty, Ores. KGON Dregon city, Dres.
WWWW Rio Piedras, P.R. 250 \(1530-196.1\)

\section*{KFBK Saeramento. Callf. 50000} WRPM Poplarvillo. Miss. KMAM Butler, Mo.

50000
1000 d
5000 d 250

Ke. Wave Length WENG Englowood Fia WCKY Cincinnati. Ohio KPBR EI Paso, Tex. KGBT Harlingen, Tex KCLR Rails, Tox. \({ }^{\text {K. }}\) Wuantico,

\section*{1540-195.0}

2NS Nassau, B.W.I. KPFOL Loronto, Ont. WSMI Litehfield. III. WBNL Boonte. KXEL W atcrlors KNEX MCPherson, Kans. KLKC Parsons, Kans. WDON Wheaton, Md. WPTR Albany. N:Y WABM Elkin, N.C. Ohio WJMJ Philadelphia, Pa. WPTS Pittston. Pa. WPME Punxsutawney, Pa. WADK Newport. R.I. KCUL Ft. Worth, Tex. KGBC Galveston, Tex.
KBVU Bellevue, Wash. KBVU Bellevue, Wash.
WTKM Hartiord, Wls.

\section*{1550-193.5}

\section*{CBE WIndsor, Ont} WBHM Birminghim, Ala. WAAY Huntsvillo. Ala. WMOE Molile, Ala. KFIF Tueson, A Aiz. KXEX Fresno, Callf.
KKHI San Fran., Callf. KKHI San Fran., Cal KDAB Arvada, Colo.
WRIZ Coral Gables, Fla. WORT New Smyrna WYOU Tampa, Fla. WJI Jacksonville, ill. WCTW Now Castle, ind. KEDD Dodge Clity, Kans. WIRV Irvine, Ky. WMSK Morganfeld, Ky. WONE Baton Rouge, KOKA Shroveport, La VSHN Fremont, Mleh. WSAO Sanitobia. M KGMD Cape Girardeat KJO Capo Grardeau, Mo. 5000 d KKJO St. Joseph, Mo. WBAZ Kİnston. N. Y. WHTB Greenville, N.C. 500d WPEG Winston Salem, N C 1000 d KUTT Fargo, N.D. 5000 . WOLR Detaware, Ohlo KMAD Madill, Okla. KREK Sapulpa, Okla. WLOA Braddock, Pa, WKFF Yauco, P, R. WBSC Bennetsvilie, s.C. WTHB N. Augusta, S.C. KVPH Canyon, Tox. KWBC Navasota, Tex. WTPL Cookvilie. Tenn. WKPT Kingsport, Tenn. WKBA VInton, Va. WBOF Virginia Beach, Va. 5000 d KOQT Bellingham, Wash, 1000 d

\section*{1560-192.3}

\section*{CFRS SImeoe, Ont} FPMC Bakersfield, Cailf. (ias Willows, Callf KBY Canton. III SWI Council Bluffs, lowa 1000 d KoYx jondin Mo Ky WQXR New York. N WSDC Mocksville, N.C. GGLD Chardon, Ohio WNS Coshocton. Ohlo TOD Toledo, Ohio KWCO Chickasha, Okla, WLVN Nashullie. Tenn KCAD Abliene, Tex. KHBR HIIlsboro, Tex.
W.P. Kc. Wave Length KGUL Port Lavaea, Tex. 50000 1000 d
50000 50000
1000 d 1000 d
250

W.P. Kc. WoveLength
W.P. Ke.


Wave Length
W.P. 500 d WBBA PIttsfield. Ill.
WKID Urbana, III.
wCNB Connersvitle. 250d WCNB Connersville, Ind.
WIVA South Bend. Ind. WZUM Carnegis. Pa.
 1000
1000 d
5000 d WIVA South Bend. Ind.
WAMW Washington, Ind. WEEZ Chambershur \(1000 d\)
\(5000 d\)

\section*{10000} KCHA Charles Cliy, lowa WXRF Guayama. P. WYNG Warwick, R.il.
WABV Abbevill WABV Abbeville, S.C
WACA Camden. S.C. -KCCR Pierre, S.Dak. WJSO Jonesboro, Tenn.
WDBL Springfleld. Tenn. KGAS Carthage, Tox. KERC Eastland, Tex. KINT EI Paso. Tex.
KYOK Houston. Tex. KYOK Houston, Tex.
KCBD Lubboek. Tex. KBUS Mexla, Tex. KTOD SInton. Tex. WRLA Luray, Va.
WRGA Richmond WRGM Richmond, Va.
KLFF Mead, Wash. KLFF Mead, Wash.
KETO Seattie, Wash. WIXK New Richnond. Wis. WSWW Plattevilie, Wits. WTRW Two Rlvers, Wis. WAWA West Allis, Wis. 1000 d KCHY Cheyenne. Wyo. \(\quad 1000 \mathrm{~d}\)
1600-187.5
CHVC Nlagara Falls, Ont. \(\quad 10000\) \(\begin{array}{ll}\text { WEUP Huntsville, Ala. } & 5000 \mathrm{~d} \\ \text { WAPX Montgomery, Ala. } & 1000\end{array}\) KVIC Cottonwood, Ariz. 1000 d
KXEW Tucson, Ariz. \(\begin{array}{lr}\text { KGST Fresno, Callf. } & 1000 \\ \text { KWOW Pomona, Calif. }\end{array}\) KWOW Pomona, Calif.
KHER Santa Marla, Callf. 1000
500 d KUBA Yuba city, Calif. 5000 KLAK Lakewood, Colo.
WKEN Dover. Del.
5000
500 d WKWF Key West, Fla. \(\quad 500\) WHEW Riviera Beach, Fla. 1000
WDKB Winter Garden, Fla. 1000 d WFUR Grand Rapids Miehigan 1000 d KUXL Golden Valley, Minn, 500 d WONA Winona, Miss. 1000 d KLEX Lexington, Mo. WAFS Amsterdam, N.Y. WBUZ Fredonia. N.Y. WAPC Riverhead, N. \(\dot{\text { W. }}\) WNCA Siler City. N.C. WCLW Mansfleld, Ohlo WPTW Piqua. Ohio KTAT Fredcrick. Okla KOLS Pryor Okla. \(k\)
\(k\) KOHU Hermiston, Oreg. WBUX Daylestown. P
WAKU Latrobe. Pa WFGN Gafiney, S.C. WJGN Johnsten, S.C. WLSC Lorls, S.C WH LP Centervilie. Tonn. WCLE Cleveland. Ten
WTRB RIpley, Tenn. WTRB Rlpley, Tenn
KZOL Farwell, Tex KZOL Farwell, Tex. Tex. KTER Terrell, Tex. KWIC Salt Lake City, Utah WSWV Pennington Gap. Va. WYTI Rocky Mount, Va. 1000 d WAPL Apoleton, WIs.

\section*{1580-189.2}

CBJ Chicoutiml. Que.

250d WEYY Tailadega, Ala
KYND Tempe, Arlz. K
250d KPCA Marked Tree, Ark. 1000 d

\section*{1000
250 \\ 250
50000}

Ark.
Ark. KPON Anderson. Callf. KWIP Merced, Callf. KDAY Santa Monlea, Cal \(500 d\) KHUM Santa Rosa, Cailf. KPIK Colorado Sprgs., Colo. 5000 d 250 d
1000 d
WWIL Ft. Lauderdale, Fla. 10000
WVGT Mount Dora, Fla. 1000 d \begin{tabular}{l}
1000 d \\
5000 d WCLS Columbus, Ga. Fi. 1000 d \\
\hline
\end{tabular} 1000 WPFE Eolumbus, Ga. 5000 WLBA Gainesville, Ga 10000 d

\section*{U. S. and Canadian AM Stations by Location}

Abbreviations: C.L., call letters; Kc., frequency in kilocycles; N.A., network affiliation-A: American Broadcasting Co.; C: Columbia Broadcasting System, Inc.; M: Mutual Broadcasting System; N: National Broadcasting Co., Inc.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Location & C.L. Kc, N.A. & Location & C.L. Kc. N.A. & Location & C.L. Ke. N.A. & ation & CIL Ke NA \\
\hline ille, Ala. & ARI 1480 & &  & Ad & 1 & & WADC 1950 C \\
\hline bevilie. S. & WABV 1590 & & K×R0 \({ }_{320}\) & A Auadilia, P. R. & WABA \(850{ }^{\text {a }}\) & & \\
\hline crdeen, M & WAMD 970 & Abilene, Tex, & KRBC 1470 A & & 1390 & amosordo, & KALG 1230 M \\
\hline on, S.Dak. & KABR 1420 & & & & 970 & & \\
\hline & & & & & & any, Ga. & \\
\hline & & & & & WAKR \(1590{ }^{\text {d }}\) & & \\
\hline
\end{tabular}






\begin{tabular}{|c|c|c|c|c|}
\hline Location & C.L. Kc. N.A. & Location C.L. Ke. N.A. & Location C.L. Ke. N.A. & Location C.L. Ke. N. \\
\hline Peokskill, N.Y. & 1420 & \[
\text { KLID } 1340
\] & \begin{tabular}{l}
Racine, Wis. \\
WRAC 1460 \\
WRJN 1400
\end{tabular} & Rocky Ford, Colo. KAVI 1920 Rocky Mount, N.C. WCEC 810 \\
\hline Pekin, III. & WSIV 1140
WFHK 1430 & Poplarville, Miss. WRPM 1530
Portage, Pa. &  & Rocky Mount, N.C. WCEC 8130 A \\
\hline Pembroke, Ont. & CHOV 1950 & Portage. Wis. WPDR 1350 & Raleigh, N.C. WKIX 850 & WRMT 1490 \\
\hline Pendieton, Ores. & KKID 1240 A & Portage la Prairia, Man & ( \({ }^{680}\) & Roeky Mount Va \\
\hline & KUBE 1050 & & WRAL 1240 & Roeky Mount. Va. WYMO 1370
Rogers. Ark. \\
\hline & KUMA 1290 & Port Alberni, B.C. CJAV 1240 & Ralls, Tox. KCLR 1530 & Rogers Clty, mlch. WHAK 960 \\
\hline & wSwV 1570 & Portales, N.MBX. KENM 1450 & Rantoul. 111. WRTL 1460 & Regersville, Tenn. WRGS 1370 \\
\hline Pensacola, Fla. & WBOP 980 & Port Angetes, Wash. KAPY 1000 D & Rapld City. S. Dak. KOTA 1380 & Rolla. Mo. KCLU 1590 \\
\hline & WOEB 610 & & & \\
\hline & WB8R 1450 & \begin{tabular}{l}
Port Arthur, Ont. CFPA 230 \\
Port Arthur, Tex. KOLE 1340
\end{tabular} & KRZU 920 & Ro \\
\hline & WNVY 1230 A & KPAC 1250 M & Raton. N.Mex. KRTN 1490 A & WRGA 142 \\
\hline & WCOA 1370 N & Porterville. Callf. KTIP 1450 A & Ravenswood, W.Va. WMOV 1360 & WROM 710 \\
\hline Penticton. B.C & CKOK 800 & Port Hope. Ont. CHUC 1500 & Rawlins, Wyo. KRAL 1240 A-M & Rome, N.Y. WKAL 1450 \\
\hline Peoria, III. & WAAP 1350 N & Port Hueneme. Calif. KACY 1520 & Raymond, Wash, KAPA 1340 & WRNY 1350 \\
\hline & WMBD 1470 C & Port Muron, Mich. WHLS 1450 A & Raymondville, TeX, KSOX 1240 Rayville. La. KRIH 990 & Ronceverte. W.Va. WRON 1400 Roseburg. Oreg. KRNR 1490 \\
\hline & WIRL 1290 & Port Jervls, N.Y. WDLC \(1490{ }^{\text {A }}\) &  & Roseburg. Orea. KRMR. KRXL 1250 \\
\hline & WPEO 1020 M & Port Jervis, N.Y. WDLC 1490 & Readri. Wa. WHUM 1240 C & KYES 950 \\
\hline Perry, Fla. & WPRY 1400 & Portiand, Ind. WPGW 1440 & WRAW 1340 N & Rosenbers. Tex. KFRD 980 \\
\hline Perry. Ga.
Perry, lowa & WPGA \({ }^{\text {W }} 980\) & Portland. Maine WCSH 970 N & Redding. Galif. KROG 230 M & Rossvillo. Ga. WR1P 980 \\
\hline Perryion, \(T\) & KEYE 1400 M & WGAN 560 C &  &  \\
\hline Peru. Ind. & WARU 1600 &  & \[
\text { KVCV } 600 \mathrm{C}
\] & KBIM 910 \\
\hline Petaiuma. Calif, & KTOB 1490 & \begin{tabular}{l}
Portland, Orad. \\
KBPS 1450
\end{tabular} & KVIP 540 & Rouyn, Que. CKRN 1400 \\
\hline Peterboroush. Ont. & CHEX & Portand, Oras. KISN 910 & Red Bluff. Calif. KBLF 1490 & Roxboro, N.C. WRXO 1430 \\
\hline & & KBEV 1010 & Red Deer. Alta. CKRD 850 & Royal Oak, Mich. WEXL 1340 \\
\hline Petersburs, Va . & WSSV 1240 M & KLIO 1290 & Redfeld, S.O3k KFCB 1380 & Rugby, N. Dak. KGCA 1450 \\
\hline Petoskey, Mich. & WMBN 1340 & KEX 1190 & Redlands. Callf. KCAL 1410 & Ruidoso, N.Mex. KRRR 1340 \\
\hline Phenix City, Ala. & WPNX 1460 A & KGW 620 N & Red LIon. Pa. WGCB 1440 & Rumford, Me. WRUM 790 \\
\hline Philadelpha, Miss. & WHOC 1490 & KO1N 970 C & Red Ladpe, Mont. KRBN 1450 & Rupert, Idaho KAYT 970 \\
\hline lladelphia. Pa. & WCAU 1210 C & KPAM 1410 & Redmond, Oreg. KPRB 1240 & Rushton, La. KRUS 1490 \\
\hline & WDAS 1480 & KPDQ 800 & Red Winc. Minn. KCUE 1250 & Rusk, Texas \\
\hline & WFIL 560 A & KPOJ 1330 & Redwood Falls, Minn. KLGR 1490 & Russell, Kans. KRSL 990 \\
\hline & WFLN 900 & KWJJ1080 A & Reedsturg, Wis. WRDB 1400 & Russelliville, Ala. WWWR 920 \\
\hline & WHAT 1340 & KXL 750 & Reedsport, Oreg. KRAF 1470 & Russellville. Ark. KXRJ 1490 \\
\hline & WIBG 990
wIP 610 & Port Neehes, Tex. KPNG 1150 & Regina, Sask. CBK 540 & Russellville, KY. WRUS 610 \\
\hline & WJMJ 1540 & Portsmouth, N.H. WBEX 1380 & CJME 300 & Rutland, Vt. WHWB 1000 \\
\hline & WPEN 950 M &  & \begin{tabular}{l} 
CKCK \\
CKRM \\
980 \\
\hline 100
\end{tabular} & \[
\begin{aligned}
& \text { YSYB } \\
& \text { CBA } \\
& \text { C }
\end{aligned}
\] \\
\hline & WRCV 1060 N & WNXT 1260 A & Reidsvilie. N.C. WFRC 1600 A & Sacramento. Calif. KCRA 1320 N \\
\hline Phillipsburg, & WPHB 12 & Portsmouth, Va. WHIH 1400 A-M & & \\
\hline Phillipsburg, & KKAN 1490 & WPMH 10100 & Ronsen, Nev.
Renc & - \\
\hline hoenix, Ariz. & KIFN 860 & Post, Tex. KUKO 1370 & KBET 1340 M & RAK 1140 \\
\hline & KXIV 1400 & Poteau. Okla. KLCO 1280 & 20 C & \\
\hline & KHAT 1480 & Potosl, Mo. KY & KONE 1450 & 470 \\
\hline & KCAC 1010 & Potsdam. N.Y. WPDM 1470 & KDOT 1230 & Safford, Ariz. KGLU 1480 \\
\hline & KOY 550 & Pottstown, Pz WPAZ 1370 & \[
\begin{aligned}
& 300 \\
& 230
\end{aligned}
\] &  \\
\hline & KOOL 960 C & WPPA 1360 M & Rhinelander, Wis. WOBT 1240 & aw, Mich. WKNX 1210 \\
\hline & KPHO 910 A & Poughkeeasle, N.Y. WEOK 1390 & Rice Lake. Wis. WJMC 1240 M & WSAM 1400 N \\
\hline & & Poughkeepsie, N.Y. WEOK 390 &  & \[
\text { SAM } 1400 \mathrm{~N}
\] \\
\hline & KRIZ 1230 & M & Riehland, Wash. KALE 960 & U \\
\hline & KTAR 620 N WRJW 1320 & Poynette, Wis. WIBU & R phland, Wis. WRCO 1450 & W \\
\hline Pledmont. Ala. & WPID 1280 & Prairle du Chion. Wh & Rlehlands, Va. WRIC 540 & St. Albans, W.Va. WKLC 1300 \\
\hline Plerre. S.Dak. & KGFX 630 & Prat KPRE 980 & Richmond, Ind. WKEV1490 A & St. Anne-de-la.Pocatiere, Que. \\
\hline & KCCR 1590 & KPRT 1290 & Rlthmond. Va. W & \\
\hline & KE 900 m & Preseott, Arlz. KYCA 1490 N & WBBL 1480 & ETH 142 \\
\hline Pine Bluff, Ark. &  & KENT 1340 & WRGM 1590 & St. Bonifate, Man. CKSB 1050 \\
\hline & \[
\text { KADL } 1270
\] & KNOT 1450 A & \[
\text { LEE } 1480 \mathrm{M}
\] & St. Catherines, Ont. CKTB 610 \\
\hline & KOTN 1490 M & \begin{tabular}{l}
*.
\[
-2
\] \\
\begin{tabular}{l} 
KAGA 950 \\
WAGM \\
\hline
\end{tabular}
\end{tabular} & WMBG 1380 A & St. Charles, Mo. KAOY 1460 St. Cloud, Minn. KFAM 1450 \\
\hline ne & \begin{tabular}{c} 
KPBA 1590 \\
WCMP 1350 \\
\hline
\end{tabular} & P 1390 & 910 C & W10N 1240 \\
\hline Pineville, & WMLF 1230 & Preston, Idaho KPST 1340 & WXGI 950 N & St George, Utah KOXU 1450 \\
\hline Píneville, w. va. & WWYO 970 & Prestonsturg. KY, WPRT WOOC \({ }^{961}\) & Richmond Hitl, Ont. CJRH 1310 & St. Helen. Mlch. WMIC 1590 \\
\hline Plipestone, Milnn. & KLOH 1050 & Price, Utah
\[
\text { KOAL } 1290 \mathrm{M}
\] & & St. Hyacint \({ }^{\text {Stege, Que. CKBS } 1240}\) \\
\hline Piqua. Ohio & WRTW 1570 &  & Ridgecrest, Callf. KRCK 1360 & St. Hyatinthe, Que. CKBS 1240
St. Jean, Que. CHRS 1090 \\
\hline Pittsburg. Calif. & KKIS 990 & Prinee Albert, Sask. CKB1 900 & KLOA 1240 & me, Quo CKJL 900 \\
\hline Pittsburg, Kans. & KOAM 860 N & Prince George. B.C. CKPG 550 & CJBR 900 & Saint John, NiB. CFBC 930 \\
\hline & KSEK 1340 & Prince Rupert, B.C. CFPR 1240 & UNO 1320 & CHSJ 1150 \\
\hline & KokA 1020 A & Princeton, Ind. WRAY 1250 & WWWW 1520 & Johns, Mich. WJUD 1580 \\
\hline & & Princeton, Ky. WPKY 1580 & Rlploy, Tenn. WTRE 1570 & St. John's, Nfld. CBN 640 \\
\hline & WAMO 8180 & Princeton, N.J. WHWH 1950 & Ripon, Wis. WCWC 1600 & C. CJDN 930 \\
\hline &  & Princeton, W.Va, WLOH 1490 A & Riverhead, N.Y. WRIV 1390 & VOAR 1230 \\
\hline & WRYT 1250 & noville. Ores. KRCO 690 &  & VOCM 590 \\
\hline & WYRE 1080 M & Prosser, Wash. KARY \({ }^{\text {Providence, R.I. WEAN }} 790\) C & KACE 1570 & \\
\hline & WWSW 970 & WHIM 1110 & Riverton, Wyo. KVOW 1450 M & St. Joseph, Mich. WSJM 1400 \\
\hline \begin{tabular}{l}
Pittsfield, II. \\
Pittsfield, Mass.
\end{tabular} & WBEA 1580 & WICE 1290 & Riviera Beach, Fla. WHEW 1600 & St. Joseph, Mo. KFEE 680 \\
\hline & WBRK 1340 M & WLAR 920 N & Riviere du Loup, Que. CELR 1960 & KK1O 1550 M
KUSN 1270 \\
\hline Plttston, Pa . Plainfield, N.J. & WPTS I540 WERA 1590 & WPRO 630 & Reanoke, Va. WDBJ 960 C & . Joseoh d'Alma, Que. \\
\hline Plainviow, Tex. & KYOP 1400 m &  & RIS 1410 M & CFGT 1270 \\
\hline & KPLA 1050 & KEYY 1450 & WROY 1240 A & KAJZ \({ }^{\text {KFU }}\) 850 \\
\hline Plant City, Fla. Platteville, Wis. & \[
\begin{gathered}
\text { WPLA } 910 \\
\text { WSWW } 1590
\end{gathered}
\] & Prye KOVO 960 M & WSLS 610 N & KMOX 1120 C \\
\hline Plattsturg, N.Y. & WEAV 960 A. N & Pryor, Dkla.
Pueblo. Coio. KOLS & Roanoke Raplds, N.C. WCBT 1230 & KSD

KST \\
\hline & IRY 1340 M & Peblo. Colo. KAPI 690 & & KWK 1380 \\
\hline Pleasanton, \({ }^{\text {Plex. }}\) Pleasantvilie, \(\mathrm{N} . \mathrm{J}\). & \begin{tabular}{l} 
KBDP 1380 \\
WONO 1400 \\
\hline
\end{tabular} & 970 & WKMC 1370 & KXOK 630 \\
\hline Pleasantvilie, N.J.
Plymouth. Mass. & WPLM 1390 & KGHF 1350 A.M & Roberval, Que. CHRL 910 & WEW 770 M \\
\hline Plymouth. N.C. & WPNC 1470 & 590 & \begin{tabular}{l}
Robinson. III. \\
Rochester, Minn \\
KROC 1940
\end{tabular} & , Minn. WIL 1490 A \\
\hline Plymouth, Wis. & WPLY 1420 & \begin{tabular}{l}
Pulaski, Tenn. \\
WKSR 1420 A
\end{tabular} & KWEB 1270 & , Minn. \({ }_{\text {KRSI }} 950\) \\
\hline Pocahontas, Ark. & KPOC 1420 & \begin{tabular}{l}
Pulaski, Va. \\
WPUV 1580
\end{tabular} & Rochester, N.H. WWNH 980 & \\
\hline Pocatello, Idaho & KSEI 930 N & Pullman. Wash.
\[
\text { KWSC } 1250
\] & Rochester, N.Y. WBBF 950 M & St. Paul, Minn. KSTP 1500 \\
\hline & KWIK 1240 M & KOFE 1150 & WHAM 1180 N & KDWB 630 \\
\hline Pocomoke City, Md &  & Punxsutawney, Pa. WPME 1540 & 析 & 8t. Peter, Minn. KRBI 1310 \\
\hline Pointe Claire, Que. & C. CFOX 1470 & Putnam, Conn. WINY 1350 & WSAY 1370 & St. Petersburg. Fla. WPIN 680 \\
\hline Pomona, Calif. & KWOW 1600 & Puyallup, Wash. KAYE 450 & WROC 1280 & WSUN 620 \\
\hline & KKAR 1220 & Quantico, Va. WQVA 1530 & Rockford, III. WROK 1440 & \\
\hline ompano Beach, & & Quebec, Que. CBV 980 & W/RL 1150 & Fla. WILZ 1590 \\
\hline & WLOD 980 & CHRC 800 & WRRR 1330 & mas, Ont. CHLO 680 \\
\hline & WPOM 1470 A & CILR 1060 & Rock Hill, S.C. WRHI 1940 M & Salamanea, N.Y. WGGO 1590 \\
\hline Ponea city Okla.
Ponce, P.R. & \begin{tabular}{l} 
WBBZ \\
WPRP 1230 \\
\hline 10
\end{tabular} & 1340
1280 &  & Salem, 111. WJBD 3350 \\
\hline & WEUC 1420 & - 1280 & Rockingham, N.C. WAYN 900
Rock Island. 111. & WSLM 1220 \\
\hline & WPAB 550 & Quesnel, B.C. WCNH 1230 M & Rockland, Maino WRKD 1450 A & Salem, Mass. WESX \({ }^{\text {SSM }}\) S 340 \\
\hline & WLEO 1770 & Quiney, lli. WGEM 1440 A & Hockmart. Ga. WPLK 1220 & \(\begin{array}{ll}\text { Salem, Mo. } & \text { KSMO } \\ \text { Salem, } & \text { Oreg. } \\ & \text { KSLM } \\ 1390\end{array}\) \\
\hline & WISO 1260 & Quel WTAD 930 C & Rock Springs, Wyo & Sasem, Ores. KAPT 1220 \\
\hline Pontiae, Mieh. & WPON 1460 & 1300 & KVRS 1360 A.M & \\
\hline Pontotoe, Miss.
Poplar Bluff, Mo. & WSEL 1440 & 70 & \[
\text { WRKH } 5
\] & WHITE'S RADIO LOG 175 \\
\hline
\end{tabular}


Location

Toronto，Ont．

Torfington，Conn．
Torrington，wyo． a．Pa． Towson，Md． rail，B．C． Traverse City，Mich

Trenton，Mo．

Trinidad，Colo．
Troy，Ala．
Troy，Ala．
Troy，N．C．

Truckee，Callf． Truro，N．S．
Truth or Consequences Tryon，N．C． Tucson，Ariz．


\section*{Wadena，Minn．}

\section*{Tucumearl．N．Mex． Tulare，Callf．}

Tulia，Tex． Tullahoma．Tenn．

\section*{Tupelo，Mlss．
Tuploek．Callf
Tuscaloosa．A}

C．L．Ke．N．A．Location CBEL 740 N CHF1 1540 D CFRB 1010 C CHUM 1050 M CKKE \({ }_{580}^{860}\)

\(\qquad\)
I

Vinila，Okla．
Virginia. Minn. \(\begin{array}{ll}\text { CKFH } & 1430 \\ \text { WBZY } & 990\end{array}\) WTOR 1490 m
Venice，Fla．
Ventura，Calif．
Verdun，Que．
Vermillion，S．Dak．
Vernal，Utah
Vernon，B，C．
Vernon，Tex．
Vero Beach，Fla．
Vicksburg，Miss．
Victoria，B．C．

Victorla，Tex．
Vitorlaville，Que．
Victorvili，Calli．
Vidalla，Ga．
Viequas，P．

C．L．Ke．N．A．
CJOR 600
CKWX 1130 M \(\begin{array}{ll:l}\text { KKEY } & 150 \\ \text { KVAN } & 1480\end{array}\) WAMR 1320 KVEN 1450 M C ェェ ェ3 KVEL 125 \(\begin{array}{ll}\text { CJE } & 1250 \\ \text { CJW } & 940\end{array}\) \begin{tabular}{cc|c} 
KGOS & 1490 \\
WTTOC & 1550
\end{tabular} WAQE 1570 CJAT 610 CJAT 610 KCCW 1310 WAAT 1300 WBUD 1260 WTTM 920 M WTBF 970 M WHAZ 1330
WTRY 980 WXKW 1000 WJRM 1390 CKCL 600 WTYN 1550 KT
KXE
\(K\)
\(K C\)
\(K T\)
\(K C\)
\(K E\)
\(K O\)
\(K M\)
\(K E\)
\(K T\)
\(K O\)
\(K T\)
\[
\begin{aligned}
& \text { Virginia Beh., Va, } \\
& \text { Virouqua. Wis. }
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{V} 1 \\
& \mathrm{~V} 1
\end{aligned}
\]
\[
\begin{aligned}
& \text { Visalla, Cal } \\
& \text { Vivian, La. } \\
& \text { Waco, Tex. }
\end{aligned}
\]
Tuscumbia，Ala．

Tuskegee．Ala．
Twenty－Nine Palms Twenty－Nine Palms
Twin Falls，Idaho

\section*{Two Rivers．Wls，}

Two Rivers，Wls wTRW 1590
Tyler，Tex．Wls，WTRW 1590 \(\begin{array}{cc}\text { KGJB } & 1490 \mathrm{M} \\ \text { KTBE } & 600 \\ \text { KZEY } & 690\end{array}\) Ukiah，Callf

Union，Mo． Union S．C．Tenn． Unlontown．Pa． Uphana，III．

Utica．N．Y

Uvalde，Tex Val D＇Or，Que． Valdese，N．C．
Valdosta，Ga．

\author{
Valentine，Nebr． Vallejo，Callif．
} Valley City．N．Dak．
Valleyfield，P．R． Valleyfield，P．R．
Valparaiso－Niceville

Van Buren，Ark． Van Cleve．Ky． Van Wert，Ohio Vanceburg，Ky．
Vancouver，B．C．

WNSM 1340 KFDF 1580 WMTC 730 WERT 1220 WKKS 1570
CBU 690 CFUN 690 CFON 1410
 WInslow，Ariz．KV，K．
WInston－Salem，

WAAA 980
WA1R 1340
WSIS 600
WTOB \(1380 \mathrm{M}-\mathrm{C}\)
Winter Garden，FIa．WOKB 1600 Winter Haven．Fla．WSIR 1490 Winter Park，Fla．WABR 1440 M Wistonsin Raplds，Wis

WFHR 1320 Wolf Pt．，Mont．KVCK 1450 M Woodslide，N．Y．WWRL 1600 Woodstock．N．B． Woodstock．Ont．CKOX 1340 Woodward，Okla．KSIW 1450 Woonsocket，R．I．WNRI 1380 Wooster，Ohio WWST 960 Wortester，Mass．

AAB \(1440 \mathrm{M} \cdot \mathrm{N}-\mathrm{A}\) WNEB 1230
WORC 1310 WTAG 580 C
KWOR 1340 M Worland，Wyo，KWOR 1340
Worthington．MInn．KWOA 730 Worthington．Minn．KWOA 830
Worthington，Ohio WRFD 880 Worthington，Ohio WRF 1400
WYnne，Ark． Wytheville，Va．WYE 1280 Yaklma，Wash．KKMA 1460 C KBBO 1390 KYAK 1390 M
Yankton，S．D．KYNT 1450 WNAX 570 C \(\begin{array}{ll}\text { Yarmouth．N．S．WJLS } 1340 \\ \text { Yauco，P．R．} & \text { CISFE } 1550\end{array}\) \begin{tabular}{l} 
Yauco，P．R． \\
Yazoo City．Miss．WAZF \\
\hline 1230
\end{tabular} Yazoo City．Miss．WAZF 1230
Yellowknife．N．W．T．CFYK 1340
York，Nebr．KAWL 1370 \(\begin{array}{ll}\text { York，Pa．WNOW } 1250 \text { M } \\ & \text { WORK } 1350 \text { N } \\ \text { WSBA } 910 \text { A }\end{array}\) \(\begin{array}{lll}\text { York．S．C．} & \text { WYCL } & 1580 \\ \text { Yorkton．Sask．} & \text { CJGX } & 940\end{array}\) Youngstown，Ohio．WBEW 1240 M
WFMJ
WKBN
W70
W Yasilanti，Mich．WYSI 1480 Yroka．Callf．KSYC 1490
Yuba City．Callf．KUBA 1600
Yuma，Arlz．KAGR 1450 KBLU 1320
KYOY 1400 \(\begin{array}{llll}\text { KYOY } & 1400 & \mathrm{~A} \\ \text { KYUM } & 560 & \mathrm{~N}\end{array}\) N Zanesville．Ohlo WHIZ 1240 N
Zarephath．N．J．WAWZ 1980 Zarephath．N．J．WAWZ 1380
Zophyr Hills，Fia．WZRH 1400

\section*{U．5．AM Stations by Call Letters}

C．L．Locotion KAAA Kinoman，Ariz． KAAB Hot Springs，Ark． KAAY Little Roek．Ark． KABC Los Angeles Ca KABL Dakland，Calif． KABR Aberdeen，S．Dak．

Kc．｜C．L．Location
1230 KACE Riverside，Callf．
340 KACI The Dalles．Oreo．
090 KACT Andrews，Tex．
790 KACY Port Hueneme．Calif．
960 KADA Ada，Okla．
350 KADL PIne Bluff，Ark．
1420 KADD Marshall，Tex．

Kc． \(\mathbf{C . L}\)
570 C．L．Location
1300 KADY St．Charies，M10． 1360 KAFP Potaluma，Calli． 1520 AAF Bakersitid．Call 1230 KAGE Winona．Minn． 1230 KAGH Crossett．Ark． 1270 KAGI Grants Pass，Oreo．\(\quad 8900\)
\begin{tabular}{|c|c|c|}
\hline Ke． & C．L．Locotion & Ke． \\
\hline 1460 & KAGR Yuba Clity．Calif． & 1450 \\
\hline 1490 & KAGT Anacortes．Wash． & 340 \\
\hline 550 & KAHI Auburn，Calif． & 95 \\
\hline 380 & KAHU Walpahu，Hawail & 920 \\
\hline 00 & & \\
\hline 1150 & WHITE＇S HADIO LOG & 177 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline C．L．Location & & & Location & & & & & & & \\
\hline Kahr Redding．Calif． & \[
\begin{gathered}
30 \\
70
\end{gathered}
\] & & \[
\left\{\begin{array}{l}
\text { mus } \\
0, t u
\end{array}\right.
\] & \[
490
\] & & & \[
590
\] & & Sloux & 通 \\
\hline  & 1499 & & & & & & & & & \\
\hline KA & 1250 & & & \(\xrightarrow{14950}\) & & & & & & 30 \\
\hline Ake & & & & 14990 & & & 810 & & & 90 \\
\hline KAAE Wich & 1240 & & & & & & & & & 40 \\
\hline KALE Rlichia & \({ }^{360}\) & & & 159 & & & 570 & & & 50 \\
\hline & & & & & & & & & & \\
\hline KALL Pasade & 1430 & & & 140 & & & & &  & \\
\hline KA & 1290 & & Benso & 1290 & & fula & & & & \\
\hline & & & & 促 & & & & & & \\
\hline & 1490 & & Biill & & & & ＋1350 & & & \\
\hline & & & & & & & 400 & & & \\
\hline & 1399 & & & & & & & & & \\
\hline KAM & \({ }_{1}^{14350}\) & & & 950 & & & & & Rer & \\
\hline KAN & 1300 & & Boulder Colo
Bismark Man & & & Esidar Rapids，low & 390 & & Eld & \\
\hline KANE Cors & 1240 & & Omaha． & 127 & & cra & & & ear & \\
\hline & & & & & & & 1240 & & Eun & \\
\hline & 1250 & & & 1490 & & & & & Minnt & \\
\hline & 1510
1390 & & & 1480 & & & 1030 & & & \({ }^{90}\) \\
\hline & 1430 & & Mi．Verion．Wish． & 1430 & & d & 1250 & & Porema，Kans． & \\
\hline KAPE Marksunilie，Lash． & （1340 & & & 15750 & & ed & \[
\begin{array}{|l|l|l|l|}
12900 \\
1250
\end{array}
\] & &  & 30 \\
\hline & 14800 & & & \(\begin{array}{r}1300 \\ 800 \\ \hline\end{array}\) & & & & & Perston．Tex． & \\
\hline KAPA Douslas，Ariz． & \({ }^{9390}\) & K8R品 & & 1490 & & & & & Lon & \\
\hline & & & & 1340 & & Ara & & & Corry & \\
\hline KA PA Paibua & 3 3 & & & & & \％ & 1230 & （ & ravi & \\
\hline & & & & & & & & & Raid city soak & \\
\hline KA & \({ }_{920}^{530}\) & & Spromhnit \({ }^{\text {che }}\) & & &  & 100 & & Ananeim．Calit． & \\
\hline KAR & 1480 & & & 1340 & & & 580 & kfac & L & \\
\hline & 860 & & & 238 & & Santa & 14990 & Kk & fit & \\
\hline & 1310 & K日1 & & 710 & & & & KkAX & San & 100 \\
\hline Ex & \({ }^{9600}\) & & & \({ }_{1410} 130\) & & Alex & \({ }_{8}^{1400}\) & \({ }_{\text {KFFA }}\) &  & \\
\hline nt & & K晾 & Brioham city， & \({ }^{8850}\) & & Deeora & & &  & （1240 \\
\hline  & & Kevr & Bury in ton，lowa & & & Denver coto & & & Redn & 80 \\
\hline Miln & 1240 & kur & Amariloo．Tex． & 1010 & & \({ }_{\text {c }}\) & 920 & & －\({ }^{\text {ana }}\) & 30 \\
\hline Ast & 1220 & K日VM & Laneastor，Calil & 1380 & & & & \({ }_{\text {kF }}\) & \({ }_{\text {Wea }}\) & 60 \\
\hline & & & & （1340 & & Boulder，colo． & 1360 & & Gra & \\
\hline KAATN M Moisese，Itahe mont． & & & & & & wonty－nine Pall & & & & 80 \\
\hline Pa & 1230 & KB & Anchorase， & ［1580 \({ }^{1270} \mathbf{K}\) & K \({ }_{\text {OH }}\) & arlbauts，Min & & kF60 & （aroo．N．D． & \\
\hline & 1320 & \({ }^{\mathrm{k} 日}\) & & 1490 & & Orton & 1350 & KFH & chit & \({ }_{1380}\) \\
\hline & & & & & & & & & & \\
\hline KAUS Austion Minn． & 1480 & & Redla & k & & trs & 20 & \({ }_{\text {KFIG }}\) & lowa Falls，lowa & 1510 \\
\hline KAAL Hocky ford，Collo & 1320 & & & k & & & 10 & KFIZ For & \％ond di & \\
\hline Calif． & 960 & & & \({ }_{1050}\) & & & 230 & \({ }_{\text {KFJ }}^{\text {KFIM }}\) & rshna & \\
\hline & 1370 & & & 13909
1590 & kDLs & erry & 1240 & \({ }_{\text {KFF }}{ }^{\text {K2 }}\) F & ci． & \\
\hline Douglas． & 1455 & KC8 & & 1170 & kDMA & & 1450 & KFKF & Bolle & 3330 \\
\hline KAYE Puy & \({ }_{1}^{1450}\) & KC & & 1460 & & & 90 & & & 500 \\
\hline KAYL Storm Lake， & 9990 & & & 1590 & & yier & 1330 & & & \\
\hline & 140 & k & （lrikland，Wasi & & & molav & & FLW & Kla & \\
\hline & 1470 & & & 790 K & & Salil & 1450 & kFmb & San oleoto，calit， & \\
\hline & 1270 & & & \({ }_{1330}\) & & & & & & \\
\hline & 1410 & & & 1500 & & Dea & 1390 & KFMO & flat & 40 \\
\hline & 659 & kc & & 1550 & & & 90 & KFNF & & \({ }^{9200}\) \\
\hline & 1600 & & & & & & & & & \\
\hline & 1390 & & & 1010 & & & 950 & kfox & Lon & 1280 \\
\hline KBBS Buffalo，Wyo． & 1485 & 訨 & & 13100 & & 䢒 & 1400 & KFp & & \begin{tabular}{l}
1230 \\
730 \\
\hline
\end{tabular} \\
\hline ceanta & 1380 & & In onew Mex & & & Heteninson． & （1260 & KFRA & & 1390 \\
\hline Mis & 1480 & KCHY \({ }_{\text {c }}\) & Coachella， & \({ }_{1}^{970}\) & & & 1200 & & & 610 \\
\hline & 987 & & & 1490 & k0xu & St．Greoree，Utah & 1450 & & & － 980 \\
\hline KBEL Idabel，Oklz & 1240 & & & 1950 & \({ }^{0} 2\) & & 1290 & \({ }_{\text {KFho }}\) & & \({ }_{1370}\) \\
\hline & & & & & & rewnwod \({ }^{\text {dex }}\) & & & & \\
\hline no， & 1340 & CiN & Ilctorville Calit． & 1590 & K & acksoinvilie，＇Tex． & 1400 & FsB & & 1390 \\
\hline F & & & an Luis obis & & & & & & enver coio & \\
\hline KBGN Caldwell．Idah & 910 & kckc sid &  & \(1350 . \mathrm{k}\) & & ond & 1400 & KFS & & 50 \\
\hline & 1588 & & & \({ }_{1340}^{240}\) & & & & & & \\
\hline K日月魚 Branson；Mo． & 1220 & & fena．La． & & & & & & & \\
\hline KBIF Fresmo，Calit：Ark， & 990 & & Ine Elun． & 11450 & & aho & 1970
1450 & & N．M．mox． & \({ }^{1230}\) \\
\hline K8IG Avalon，Calit & 740
980 & & & \(\xrightarrow{1120}\) & & ditat & 1430 & & & \\
\hline korshold．Calli． & 970 & & clinton，lown & & & & & & & 9880 \\
\hline & & & &  & EL & ulsa，Okli： & & & lern & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
C．L \\
Lecaflon
\end{tabular} & & Locaflon & Ke． & C．L． & Locaflon & Ke． & L. & Location & \\
\hline C．L Locaplon & & KZZN Littlefield，Tex． & \[
1490
\] & & Scranton．Pa． & \[
590
\] &  & for & \[
\begin{aligned}
& 140 \\
& 100
\end{aligned}
\] \\
\hline KWKC Abllene， & 1340 & WAAA WInston．Salem，N & \({ }_{1480}^{980}\) W & & Ft．Plerce，Fla， & \[
\begin{array}{r}
1330 \\
540
\end{array}
\] & & ， & 50 \\
\hline KWKH Shreveport，La & 1190 & WAAB WO & 1440
950 & &  & 00 & WBKN & Nowton， & 10 \\
\hline KWKW Pasadena，Cali & 1900 & WAAF Chicaso & 1470 & WASA & Hayre de Grace，Md． & 330 & wBKV & West Be & 0 \\
\hline KWKY Des & \[
\begin{aligned}
& 1150 \\
& 1240
\end{aligned}
\] & WAAK Dallas，N．c． & 960 W & WASK & Lafayette，Ind． & 1450 & WBLA & Eluzabet & 1290 \\
\hline WLD Liberty． & A & WAAP Pooria，III． & 1350 W & & & \[
\begin{array}{r}
1450 \\
900
\end{array}
\] &  & Bellefonto，Pa． & 0 \\
\hline KWLM Willmar，Min & 1340 & AT Tre & 1300 & & Kno & 620 W & WBLG & Lexington，Ky & 1300 \\
\hline KWLW Nampa，Jdaho & 1340 & WAAX Gad & 1550 & H & Athens，Ohio & 970 W & & a & 1230 \\
\hline KWMT Ft．Dodie，lowa & 1400 W & & 50 & & Antigo，wis． & w & WBLO & Evergreen，Ala． & \\
\hline KWNA WInnemueca，Nov． & \[
\begin{aligned}
& 1400 \\
& 1730
\end{aligned}
\] & WABA AO & 1480 & WATM & Atmore．Ala． & & WBLR & Batesburg，S．C． & 1490 \\
\hline KWNT Daven & 1580 & WABC New York & 770 W & & Watertown．N．Y & 1240 W & & & 480 \\
\hline KWOA Worthington，Mi & T30 & WABF Fairhop & W & & & \[
\begin{aligned}
& 1290 \\
& 1480
\end{aligned}
\] & WBLY &  & \\
\hline WOC Poplar Bluff．Mo． & 930 & & 1150 & & Water & 1320 & WBMA & & 00 \\
\hline KWOE Clinton，Okla & ＋320 & 8 & 910 & WATS & Sayre，Pa & 960 W & WBMC & maminnville．Tent． & \\
\hline KWON Bart & 1940 & WABJ Adrian，Mich． & W & & & 1240 & WBMD & Balt & 1310 \\
\hline WOS Jefferson City & 1240 & WABL Amite． & \[
\begin{array}{r}
1570 \\
990
\end{array}
\] & & Ashland，Wis． & 1400 & WBML & & \\
\hline OW Pomona．Call & 600 & & \[
990
\] & & Alpena，＇mlch． & 1450 & WBMT & Black Moun & \\
\hline WPC Museatine．\({ }^{\text {do }}\) & 860
1450 & WABR \({ }^{\text {W }}\) & 1440 & WAUB & Auburn．N．Y． & 90 & & lotte & \\
\hline PM Westmore， & 1270 & WABT Tusker & 580 & & & 1310 & & & 50 \\
\hline KWRA ldaho Falls，Id & 1400 & WABV Abbe & & WAUD & A & 1050 & & & 540 \\
\hline KWRD Henderson．Tex． & 1470 & W & 810
400 & WAUX & Waukestia， & 1510 & W & Beac & 60 \\
\hline KWRE Warrenton，Mo． & 730 & & & & & 70 & & Col & 460 \\
\hline KWRF Warr & & & 1590 & & ayton，Ohlo & 1210 & WB & Onelda & 1 \\
\hline RO Coquilio，\({ }^{\text {ares．}}\) & 1370 & WACB Kitta & 1380 & WAVL & Apollo． & 910 & & New York，N．Y． & 380 \\
\hline WRT Boonvilie． & & & 730 & & Stl & 220 & & & \\
\hline MV miCook， & ， & WACK Newark． & 420 & & Av & & & & 550 \\
\hline ull & & Wayeros & \％ & & & 690 & & －leans & 800 \\
\hline WSD Mt．Shasta，Cai & 620 & & 50 & & Portsmouth & 1950 & WBOP & nsacola．Fia． & 980 \\
\hline KWSH Wewoka．Seminate， Oklaho & & WACR CO & 1420 & W & Now Haven，Co & 1300 & W & 11 & \\
\hline & 1570 & WADA Shel & 90 & & West A & & & & 0 \\
\hline SL Grand Junction．Colo． & 1340 & WAOC Akro & & & 2arephat & \[
\begin{aligned}
& 1570 \\
& 1380
\end{aligned}
\] & & Lock Haven & 230 \\
\hline kwso Wasco，Calit． & 1050 & & 1540 & & ero Bea & 1370 & WBR & Mt．Cle & 0 \\
\hline KWTC Barstow，Cal & 1230 & WADK & 1280 & WAXU & Georgetown，\(k y\) ． & 1580 & & & \\
\hline KWTO Springneld， & 290 & & 960 & WAXX & Chippewa Falls，Wis & & w & &  \\
\hline KWW W Concord Call & 1480 & WADS Ansonla． & & W & Way： & & & & \\
\hline Enterprls & 1340 & WAEB Allentown， & 790 & & Dund & & & & 1340 \\
\hline VY Waverly，lowa & 70 & WAEL May & 900 & & & 550 & W & er & 1400 \\
\hline WL Waterloo，lowa & 930 & WAFC Staunton，\({ }^{\text {a }}\) a & 1570 & & na & 610 & w & Mar & 0 \\
\hline WYK Farmington，N．Mex． &  & WArS A & 1290 & & Way & 1230 & WBRN & Bio Rapid & \\
\hline  & \[
\begin{array}{r}
1400 \\
1410
\end{array}
\] & WAGF Dotha & 1320 & & Way & 1380 & WBRO & Way & \[
\begin{aligned}
& 10 \\
& 20
\end{aligned}
\] \\
\hline KWYR WInner，S．\({ }^{\text {S }}\) & 60 & WAGG Eranklion & 950 & & &  & & Boon & 0 \\
\hline KWYZ Everot & 1230 & WAGM Prasque & \[
\begin{array}{r}
950 \\
1840
\end{array}
\] & & Yazoo City，Mlss． & 1230 & WB & Brewst & \\
\hline \(K \times A\) Seattle， & 770 & WAGN Men & 580 & WAZL & Hazelton & 149 & W8RX & Berwi & \\
\hline XAR Hope， & 1540 & WAGS Bisho & 80 & & Summ & & & Waterbury，Conn： & \\
\hline KXEL St Loul & 1010 & WAGY For & 1320 & W & ， & & & Boaz， & \\
\hline & 1340 & WAlK Galesburg，ill． & 1590 &  & B & & & Black & 50 \\
\hline KXEW Tueson，Ariz． & 1600 & WAIL Baton Rou & 1460 & & cleve & 1340 & W日S & New Bedford，Mass & 20 \\
\hline EX Fresno．Calif． & 50 & WAIM Ander & 1270 & & Burlington，N．C． & 1150 & WB & Charlotte， & \\
\hline G1 Ft．Madison， & 60 & WAIN Columbla， & 1340 & & Balti & 1090 & & Batar & \\
\hline KXGN Glendive． & 1400 & WAIA Winston•Salem， & 820 & & Montsomery & & W8 & 吅 & \\
\hline KXIC \({ }^{\text {KXIT }}\) & 800
1410 & WAJF \({ }^{\text {Wecat }}\) & 1490 & & Ft．Worth， & 820
1460 & WBTM & Dan & 370 \\
\hline KXIV Phoenix，Ari & 1400 & R Moroan & 1440 & & M \({ }^{\text {a }}\) & 1400 & & Linto & 600 \\
\hline KXJK Forrest City & 4520 & Atlant & 1230 & & Bar & 740 & W & Bridge & \\
\hline XKW Lafayette， & 1520 & & & & Wlik & 1240 & W & 8uckh & \\
\hline K \({ }^{1}\) & 1240 & WAKN Lawren & 10 & & Greo & 60 & & － & 260 \\
\hline KXLE Ellonsbur & & & 1590 & WBAZ & Kingsto & & & & \\
\hline KXLF Butte，M & & U La & 1570 & W8BA & Plitsflel & 980 & & Doy & 40 \\
\hline  & 1450 & WAKY & 790 & & Burlin & & & & \\
\hline KXLO Lewlston，M & 12 & WALA Mobl & 1410 & & Roch & 1230 & & Way & \\
\hline KXLR Little Rock，Ar & 1150 & WALD & 20 & & \(k\) Alake & & & & \\
\hline KXLW Clay & 1320 & WALE Fall river， & 1400 & & & 1480 & & Utic & 0 \\
\hline KXLY Spokane， & 20 & WALG Albany & 1370 & W & chic & 780 & & Beaver Falls． & \\
\hline K \(\times 0\) El Cen & & WALK Patc & 1370 & & For & 80 & WBY & Cale & \\
\hline A Saeramento，Call & 1470 & WALL Midd & 1340 & & & 1340 & WB & Savannah，G & \\
\hline XOK St．Louls，Mo． & 30 & WALM Alblon． & 1260 & & E．St．Louis & 1490 & WB & Canton，III． & \\
\hline KXOL Ft．Worth．Tex． & 124 & WALO Humacao P，R & 110 & & T Lyon & 0 & & Boston & 0 \\
\hline X0X Sweetwater，Tex． & 1240 & WALT Tamp & 110 & & W Youngst & 1240 & & Springfield，Mas & \\
\hline KXRA Alexandrla，M & 1490 & WALY Herk & & W88 & X Portsmouth，N．H． & 380 & WBZ & Brazil， & 0 \\
\hline KXRJ Russelivil & 1390 & WAMD Aber & 1260 & WB & Wood R1 & 90 & WB2 & Torri & \\
\hline RO Aberdeen．Wa & 1320 & W & & W882 & \(z\) Ponca Clity，Okla & 1230 & WCA & Northfield，Min & \\
\hline KXRX San jose， & 1450 & L & 340 & W BGA & A Bay Minetto，Al & 0 & & Ba & 0 \\
\hline KXXL Bozeman，mo & 795 & M M & & W BC & B Levit & & & Baltimore，Mo & \\
\hline KXYZ Houston．\(T\) & 790
1320 & \({ }_{0}^{\text {M }}\) Homeste & 860 & & Has & 20 & & Lowell．Mass． & 80 \\
\hline  & 1260 & WAMR Venl & 1920 & W & Will & 30 & & Det & \\
\hline CA Prescott．Ariz． & 1490 & WAMS wilmington，Dil． & 1380 & & Bay & 40 & & Ora & \\
\hline YCN Whea & 1340 & WAMW Washington，Ind． & 1580 & W & R Bhay & 1260 & & Cha & 30 \\
\hline YES Rosebura，Orea． & 950 & WAMY Amory． & 1490 & & Union． & 1460 & & Burling & \\
\hline KYJC Medford．Ore & 1230 & NA Anniston， & & W & C Pittsfield， M & 1420 & WGA & Cayce． & \\
\hline ME Bolse，Idaho & 1580 & WANB Waynesburg，Pa & 900 & WBE & E Harvey，ill． & 570 & WCA & Carthape． & \\
\hline KYND Tempe，Ariz． & 1580 & WAND Canton， & & WBEI & Ellzabethton．Tenn & 1240 & W & Corn & 50 \\
\hline KYNG Coos Bay，Ores． & 20 & E At．Wayne， Cl d． & 1490 & WBEL & South Beloif，III． & 1380 & & Cha & \\
\hline KYNO Fresno，Callip． & 50 & WANN Ann & & WBEN & N Buffalo． & & & Col & \\
\hline  & 50 & Ander & 990 & WBER & R Moncks Corner，N． & & & Bent & \\
\hline Yok Houston，\({ }^{\text {cex }}\) Y & 1450 & & 1990 & WBET & T Brockton，M & 0 & & Baltimor & \\
\hline Yof Bythe，Calli． & 1480 & WAOK Atlanta，Ga & 1380 & WBEU & Beaufort． & 0 & & Now York． & \\
\hline KYOU Greeley．Colo & 1450 & WAOV Vincennes，Ind． & 1450 & W & V Beaver \({ }^{\text {amm．Wis．}}\) & 1490 & & Cheboy & 240 \\
\hline YRO Potos & 1280 & WAPA San J & 680
1570 & & C Fremont，Mich & 1490 & WCGC & Hartiord．Conn． & 1290 \\
\hline KYSM Mankato，M & 12 & WAPC Riverh & & & D Bedford， & 1310 & & Lawrence，Mass． & 800 \\
\hline KYSN Colorado Spros．，Colo & & WAPE Jackso & & WBGC & C Chiploy，Fla． & 1240 & & Nell & 源 \\
\hline KYSS Missoula，Mon & & F MeComb． & & & N Bowling Green，Ky． & 340 & WCC & Minnea & 30 \\
\hline KYUM Yuma．Ariz & 1230 & WAPG Areadia， & 1070 & wBg & R Jesup．Ga． & 1370 & & Traverse City，mic & 10 \\
\hline KYVA Gallup，N．M & 100 & WAPL \({ }^{\text {WA }}\) & & WBH & F Fitzoerald & 1240 & & Car & \\
\hline KYW Cleveland，ohlo & 1220 & WAPO Chattanooga，Tenn． & 1150 & WB & C Ham & 1270 & 0 WCD & Eden & 0 \\
\hline KZEE Weather & & & 1600 & WB & F Carter & 1450 & & wi & \\
\hline KZEY Tyle & 1390 & WAQE Towson，Md． & 1570 & WB & M Birmingham， & 1550 & 0 WC & Wi & \\
\hline KZIX Fort Collins，Co & 600 & WAQI Ashtabula．Ohio & 1600 & W8 & P \({ }^{\text {a }}\) & 1230 & & & \\
\hline KZNG Hot Springs，Ark． & 1470 & WARA Attleboro，Mass． & 320 & & & 540 & & sb & \\
\hline KZOK Prescoth & & WARB Covington．La． & 990 & & & 1050 & & Hawk & \\
\hline K20L F & 1570 & WARD Johnstown，Pa． & \[
\begin{aligned}
& 1490 \\
& 1250
\end{aligned}
\] & & Greensboro，N． & 1470 & 0 WCEM & M Cambr & \\
\hline ZON Tolleson，Ar & & RE Ware．Mass． & 1240 & & L Le & 1410 & WCEN & N Mt，Pleasant，Mich． & \\
\hline 200 Honolulu．Haw 20T Marianna，Ark． & 1460 & WARI Abbevilie， & 1480 & WBIP & P \({ }^{\text {B }}\) & & & & \\
\hline OW Globe，Arlz． UN Opportunlty， & & K Hag & 1490 & ／ & R Knoxville，
S Bristol，Conn． & 1440 & WHIT & TE＇S RADIO LOC & 181 \\
\hline
\end{tabular}




\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline C.L. & & & & Location & & C.L. & & & & & \\
\hline WWPO & Conneaut, Ohio & \[
1360
\] & WWYO & Pineville, w.Va. & \[
970
\] &  &  & Kc. & C.L. & Location & кe. \\
\hline WWPA & Williamsport. Pa . & 1340 & WXAL & Demopolls, Ala. & 1400 & \[
\begin{aligned}
& \text { WYAM } \\
& \text { WYCL }
\end{aligned}
\] &  & \[
1450
\] & & Cuinton. & 1380 \\
\hline WWRI & & 1450 & wx & Rict & 950 & & Birmingham, Ala. & 850 & WYSL & Buffalo, \({ }^{\text {N, }}\) & 80 \\
\hline WWRJ & W & & WX & Dublin, Ga. & 1480 & WY & Corbin Ky & 1330 & WYSR & Franklin & 1250 \\
\hline WWRO & Ward & & W×LL & Big Delta. Alaska & 硣 & & & & & Madiso & 250 \\
\hline & Glens & 1450 & & Indianapolis. Ind. & 950 & W & Manning. S.c. & 1440 & & Rocky mount, Va, & 70 \\
\hline SR & St Albans, & 1420 & Wxok & Baton \(\mathrm{R}_{\text {Ruge, }}\) La. & \({ }_{1260} 730\) & & Sarasota & 1280 & & Allan & 480 \\
\hline WWSW & Wooster, Ohio & 960
970 & WX \({ }^{\text {W }}\) WF & Guayama. & & & Crenn & & WZ & DeFunt & 460 \\
\hline WWVA & & & & Sexington, & 11 & WYNK & Baton Rouge, La. & 1380 & & Pa & 1580 \\
\hline WB & Jasper. \({ }^{\text {a }}\) & 1360 & WXVA & Charleston, & 550
1550 & WYNN & Florenc & 40 & WZOE & Prinecton. & 1250
1490 \\
\hline & te & 990 & WXVW & Leffersonito & 1450 & WYNR & Chicaso. & 1350 & WZOK & Jacksonville, & \\
\hline WWWW & Russelliville, Ala. & 920 & Wxxx & Hattiesburs. Miss. & 1310 & WYPR & Campaile. & 50 & WZOO & & \\
\hline WWXL & nehester, Ky. \({ }^{\text {d }}\) & - 1450 & WXYZ & Jamestown, & 1340 & WYRE & Pittsburgh, \({ }_{\text {a }}^{\text {a }}\). & 1080 & & lephyr Hills, Fla. & \\
\hline WWYN & rie, Pa & 1260 & WYAL & Scotland Neck, N.C. & \[
\begin{aligned}
& 1270 \\
& 1280
\end{aligned}
\] & WYSE & Loulisburg, N.C. & \[
1480
\] & & \[
\begin{aligned}
& \text { eacid } \\
& \boldsymbol{F I I}
\end{aligned}
\] & 10 \\
\hline
\end{tabular}
C.L.

Location
CBA Sackville, N. B.
CBE Windsor, N.B.
CBE Windsor, Ont.
CBG Gander, Níd
CBH Hallax, N.S.
CBI Sydney, N.S.
CBJ Chicoutimi, Que.
CBK Regina, Sask.
CBL Toronto, Ont.
CBM Mostreal. Que.
CBN St. John's, Nild
CBT Grand Falls, Nild.
CBU Vancouver, B.C.
CBV Quebec, Que.
CBW Winnipeg, Man.
CBX Edmonton, Alta.
CBY Corner Brook, Nfid.
CFAB Windsor, N.S.
CFAC Calgary, Alta.
CFAR Flin Flon, Man
CFAX Victoria, B.C.
CFBC Salint John, N. B.
CFBM Broehet, Man.
CFBR Sudbury. Ont.
CFCB Corner Book, Nfid.
CFCF Montreal. Que.
CFCH North Bay, Ont.
CFCL Timmins, Ont.
CFCN Caloary, Alta.
CFCP Courtenay, B.C.
CFCW Camrose, Alta.
CFCY Charlotetown, P.E.I.
CFDA Victorlaville, Que.
CFGM Rit́hmond Hitl. Ont.
CFGP Grando Prairie. Alt
CFGT St. Joseph d'Alma, Que CFJC Kamloons, B.C. CFJR Brockvliie, Ont. CFKL Schefferville, Que. CFLM LaTuque, Que.
CFML Cornwall, Ont. CFNB Frodericton, N.B, CFNS Saskatoon. Sask. CFOB Fort Frances Teritory CFOR Frill rances. Ont. CFOR Orillia, Ont.
CFOS Owen Sound, Ont. CFOX Polrite Claire, Que.
CFPA Pori Arthur, Ont.
CFPL London, Ont. CFPR London, Ont.
CFQC Saskatoon, Sask, B.C. CFRA Saskatoon, Sas
CFRA Ottawa, Ont.

\section*{Canadian AM Stations By Call Letters}


\section*{Mexican and Cuban AM Stations \\ Mexican stations audible in the Southwest; the more powerful Cuban stations}

Locotio

\section*{Mexico}

BAJA CALIFORNJA
Cuervos
El Saugal
Ensenada
Mexicall

Tijuana

1000 XEDY 1460 \begin{tabular}{l} 
XEDX 1010 \\
\(\times E P F\) \\
\hline
\end{tabular} XEPF 1400 XEXK 920 \(\begin{array}{rrr}\text { XED } & 1050 & 250 \\ \times & 5000\end{array}\) \(\begin{array}{rrr}\text { XEAA } & 1340 & 250 \\ \text { XEAO } & 910 & 250\end{array}\) \(\begin{array}{lll}\text { XECL } & 990 & 5000 \\ \text { XEGE } & 1150 & 1000\end{array}\)

CHIHUAHUA
Chihuahua XEM 1390

Cludad Camargo
Cludad Dellcias
Cudad Dellcias

Location

\section*{Monclova}

\section*{500}
C.L. Ke. W.P. Location
C.L. Ke. W.P. Pledras Negras XEM1J 9260250
\begin{tabular}{|c|c|c|c|}
\hline Location & C.L. & Ke. & W.P. \\
\hline & XEPH & 590 & 5000 \\
\hline & XEQK & 1350 & 1000 \\
\hline & XEQR & 1030 & 10000 \\
\hline & XERC & 790 & 1000 \\
\hline & XERG & 690 & 250 \\
\hline & XERCN & 1110 & 50000 \\
\hline & XERH & 1500 & 50000 \\
\hline 1 & XERPM & 660 & 10000 \\
\hline & XESM & 1470 & 10000 \\
\hline & XEUN & 860 & 5000 \\
\hline
\end{tabular}

\section*{DISTRITO FEDERAL}

Mexieo City
\begin{tabular}{rrr|} 
XEB & 1220 & 100000 \\
XEDF & 970 & 10000 \\
XEL & 1260 & 5000
\end{tabular}

\section*{DURANGO}

XEDU \(860 \quad 1000\) NUEVO LEON \(\begin{array}{llll}\text { XEQ } & 940 & 150000 & \text { Linares } \\ \text { XEW } & 900 & 250000 & \text { Monterrey }\end{array}\) \(\begin{array}{rrr}\text { XEX } & 730 & 500000 \\ \times E F R & 530 & 5000\end{array}\) \(\begin{array}{lrr}\text { XEX } & 730 & 500000 \\ \text { XEFR } & 530 & 5000\end{array}\) \(\begin{array}{lrr}\text { XEJP } & 1150 & 10000 \\ \text { XELA } & 1530 & 10000\end{array}\) \(\begin{array}{lrr}\text { XELA } & 830 & 10000 \\ \times X E L Z & 440 & 5000\end{array}\) \(\begin{array}{lrr}\text { XELZ } & 1440 & 5000 \\ \text { XEMX } & 1880 & 5000 \\ \text { XENK } & 620 & 5000\end{array}\) \(\begin{array}{lrr}\text { XENK } & 620 & 5000 \\ \text { XEOY } & 1000 & 50000\end{array}\)
\begin{tabular}{rrr} 
XER & 1260 & 250 \\
XEG & 1050 & 150000 \\
XENL & 860 & 5000 \\
XEH & 1420 & 1000 \\
XET & 990 & 5000 \\
XEAR & 570 & 1000 \\
XEAW & 1280 & 1000 \\
XEFB & 630 & 5000 \\
XEMR & 1370 & 500 \\
XEOK & 920 & 500
\end{tabular}


\section*{U. S. FM Stations by States}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Abbreviations: Mc., megacycles; asterisk (*) indicates educational station} \\
\hline Location & C.L. Mc. L & Location & C.L. Mc. & Location & C.L. Mc. & Location & C.L. & Mc. \\
\hline \multicolumn{2}{|r|}{ALABAMA} & Hayward & KBBM 101.7 & San Jose & \[
\begin{array}{ll}
\text { KSJO-FM } & 92.9 \\
\text { KRPM } & 98.5
\end{array}
\] & \multicolumn{3}{|c|}{FLORIDA} \\
\hline Albertvillo & WAVU.FM 105.1 & laplewood & KTYM.FM \({ }^{\text {KSDA }}\) & San Luis Oblspo & KATY.FM 96.1 & Coral Gables & WVCG.FM & 105.1
94.5 \\
\hline Alexander clty & WRFS.FM 106.1 & Lodi & KCVR-FM 97.7 & San Rafat & KTIM 100.9 & Daytona Beach. & WWIL.FM & 103.5 \\
\hline Andalusia & WCTA.FM 98.1 & Long Beach & KFOX F M 102.3 & San Mateo & KWIR.FM 96.7 & & WWLM & 105.9 \\
\hline Anniston & WHMA.FM 100.5 & & \(\begin{array}{ll}\text { KLON } \\ \text { KNOB } & 98.9\end{array}\) & & KWI2.FM \({ }_{\text {KFIL }} 106.3\) & & WMFP & 100.7 \\
\hline Athens
Birmingham & \begin{tabular}{l}
W JOF 104.3 \\
WAPI.FM 99.5
\end{tabular} & Los Altos & \(\begin{array}{ll}\text { KNOB } \\ \text { KPGM } & 97.7\end{array}\) & Santa Barbara & KRCW 97.5 & Fort Plerce & WARN & 98.7 \\
\hline Birmingham & W ERC.FM 106.9 & Los Angeles & KABC.FM 95.5 & & KDB-FM 93.7 & Galnesville & WRUF-FM & 104.1 \\
\hline & WSFM 93.7 & & KBBI 107.5 & & KMUZ 103.3 & Lacksonville & WMAR.F & \({ }_{96.1}^{95.1}\) \\
\hline Clanton & WKLF-FM 100.9 & & \(\begin{array}{ll}\text { KBCA } & 105.1 \\ \text { KBMS } \\ \text { K }\end{array}\) & \begin{tabular}{l}
Santa Clara \\
Santa Cruz
\end{tabular} & KSCO.FM 99.1 & Mlami & WKAT-FM & 93.3 \\
\hline Cullman & WFMH-FM 101.1 & & \(\begin{array}{ll}\text { K8MS } & 105.9 \\ \text { KCBH } & 98.7\end{array}\) & Santa Cruz & KEYM 99.1 & mami & WCKR.FM & 97.3 \\
\hline Decatur Homewood & WHOS. FM 102.1 & &  & & KSMA.FM 102.5 & & WGBS-FM & 96.3 \\
\hline Huntsvilie & WAHR 99.1 & & KFMU & Santa Monlea & KCRW -89.9 & & WTHS & \\
\hline & WNDA 92.9 & & KGLA*103. & & KMAX 1071 & & T.FM & 93.1 \\
\hline Mobile & KRGGFM 99.9 & & KH1
KMLA
K1.1 & Siepra Madre & KMAX
KCVN
Of & Maml Beach & WAEZ.FM & 94.9 \\
\hline Montgomery & WAJM 103.3 & & NX.FM 93.1 & & KSTN.FM 107.3 & & WMBM-FM & 93.9 \\
\hline &  & & KPFK \({ }^{\text {a0. }} 7\) & & KWG.FM 105.7 & Ocala & WMOP-FM & 93.7 \\
\hline Sylaeauga Tuscumbla & WVNA 100.9 & & OL.FM 93.9 & Turlock & KHOM 92.9 & Oriando & WDBO.FM & 92.3 \\
\hline Tuscaloosa & WTBO.FM 95.7 & & KRHM 94.7 & Ventura-0xnard & KVEN.FM 100.7 & & WKIS.FM & 100.5 \\
\hline & WUOA -91.7 & & \(\begin{array}{rrr}\text { KRKD.FM } & 96.3 \\ \text { KLAC.FM } & 102.7\end{array}\) & Visalia & KONG.FM
KWME.FM
\(\mathbf{9 2 . 9}\)
\(\mathbf{9 2 . 1}\) & & WGXT.FM & 100.3
97.9 \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{ALASKA}} & & KUSC 91.5 & Wainut Cre
West Covin &  & Palm Bea & WPEX.FM & 94.1 \\
\hline & & & KXLU 88.7 &  & KATT 95.3 & St. Petersburg & WGNB & 101.5 \\
\hline Anchorage & KNIK 105.5 & \multirow[b]{3}{*}{Marysvilio Madesto} & KHOF 99.5 & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{COLORADO}} & \multirow[t]{3}{*}{Sarasota Tallahasseo} & WYCX & 99.5
102.5 \\
\hline & R-FM 102.1 & & KMYC.FM 99.9 & & & & FSU.FM & \({ }_{-91.5}\) \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{ARIZONA}} & & KBEE-FM \({ }^{\text {KTRE.FM }} 104.1\) & \multirow[t]{2}{*}{Boulder Colorado Springs} & KRNW 97.3 & & WBGM.FM & 98.9 \\
\hline & & Monterey & KHFR 96.9 & & KRCC 91.9 & \multirow[t]{3}{*}{Tam} & WDAE.FM & 100.7 \\
\hline Glote & KW1B.FM 100.3 & Mountalin Vlow & KFIC * 88. 5 & & KFMH -96.5 & & WFLAPFM & 93.3
104.7 \\
\hline Mesa & KBUZ-FM 104.7 & Nowport Beach & KNBB 103.1 & & VORSHS 92.9 & & WPTUN & \\
\hline Phoenl & KELE \({ }_{\text {KFCA }}\) & Oakland & KAFE 98.1 & Cortez & KVOKFM 94.1 & Winter Park & WPRK & -91.5 \\
\hline & K00L.FM 94.5 & Ontario & KASK-FM 93.5 & Denver & \(\begin{array}{ll}\text { KFML.FM } & 98.5 \\ \text { KDEN.FM } & 99.5\end{array}\) & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{GEORGIA}} \\
\hline & KOITH 101.3 & Oxnard & KAAR 104.7 & & \begin{tabular}{l} 
KDEN-FM \\
KLIR.FM \\
\hline 100.5
\end{tabular} & & & \\
\hline & \(\begin{array}{ll}\text { OY-FM } & 92.3\end{array}\) & Pasadena & \(\begin{array}{lll}\text { KPCS } & 89.3 \\ \text { KAPP } & \mathbf{9 3 . 5}\end{array}\) & & KOA.FM 103.5 & Athens & WGAU.FM & 102.5 \\
\hline & KTAR-FM 98.7 & Redondo Beach & KCHLFM 96.7 & & KTGM 105.1 & Attanta & WABE & 103.1 \\
\hline & KYEW 93.3 & Rediands. & KLOA.FM 105.5 & Grand Junction & KREX.FM 92.3 & & GKO.FM & 103.3
92 \\
\hline Tompe & UPD.FM 97.9 & Riveralde & KPLI 99.1 & Manlou Springs & KCMS.FM 102.7 & & WSB.FM & 92.9
98.5 \\
\hline Tueson & KFMM 99.5 & & ACEFM 92.7 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{CONNECTICUT}} & Aupusta & WAUG-FM & 105.7 \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{ARKANSAS}} & \multirow[t]{6}{*}{Sacrame} & KDUO 97.5 & & & & WBBC.FM & 103.7 \\
\hline & & & KRA-FM 96. & Bridseport & W122 99.9 & Columbus & WRBL-FM & 93.3 \\
\hline Blythavilie & KLCN-FM 96.1 & & KEBA 100.5 & Brookfeld & WGHF 95.1 & Galnesville & WDUN-FM & 103.9 \\
\hline Ft. Smith & KFPW-FM 94.9 & & KH1Q 105:1 & Danbury & WLAD-FM 98.3 & Lagrange & WLAG-FM & 104.1 \\
\hline Jonesboro & KBTM.FM 101.9 & & K M ML 95.3 & Martford & \begin{tabular}{l} 
WHCN \\
ORC.FM \\
\hline 102.9
\end{tabular} & Macon & WMAZ.FM & 99.1 \\
\hline & KASU 91.9 & & , KRAK.FM 92.9 & & \begin{tabular}{lll} 
WORC.FM \\
WCCC-FM & 102.9 \\
\hline 106.9
\end{tabular} & Marlett & WKLS & 101.5 \\
\hline Little Rock & \begin{tabular}{l}
KABK 103.7 \\
KAMS 103.9
\end{tabular} & & KSFM 96.9 & & WSCM 93.7 & Newnan & COH.FM & 96.7 \\
\hline Oseoola & KOSE.FM 98.1 & & KXBG
KXOA & & RTC.FM - 99.3 & Savannah & TOC-FM & 97.3 \\
\hline Pine Bluft & KOTN-FM 92.3 & & KSBW.FM 102.5 & & WTIC.FM 96.5 & Swainsboro & WJAT.FM & 101.7 \\
\hline Slloam Spring & K KUOA.FM 105.7 & Salinas & KSBW.FM \({ }^{\text {KVCR }}\)-91.9 & Manchester & WINF.FM 107.9 & Toccaa & WLET-FM & 06.1 \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{CALIFORNIA}} & & KF MW 99.9 & Mefiden Middletown & WESU 88.1 & \multicolumn{3}{|c|}{HAWA} \\
\hline & & \multirow[b]{8}{*}{San Dlego} & KEBS 99.5 & Now Haven & WNHC.FM 99.1 & \multirow{4}{*}{Honolulu} & AIM-FM & 95.5 \\
\hline Alameda & K」AZ 92.7 & &  & & WYBC-FM 94.3 & & KVOK & -88.1 \\
\hline Anaheim &  & & \[
\text { KFMX.FM } 96.5
\] & Stamford & WSTC.FM \({ }_{\text {WHUS }}\) WA6.7 \({ }^{960.5}\) & & KUOH & *90.5 \\
\hline Atherton & KPEN 101.3 & & KGB.FM 103.5 & Waterbury & WATR-FM 92.5 & & & \\
\hline Auburn & KAFI 101.1 & & KITT 105.3 & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{DELAWARE}} & & - & \\
\hline Avalon & KBIC 104.3 & & \(\begin{array}{ll}\text { KLRO } & 98.9\end{array}\) & & & \multirow[t]{2}{*}{Bolse Lewiston} & K801.FM & \\
\hline Bakersfield & KERN-FM 94.1 & & \(\begin{array}{ll}\text { KPRII } & 106.5\end{array}\) & & & & M & 96.7 \\
\hline & K0XR 101.5 & & KSDS -88.3 & \multirow[t]{2}{*}{Wlimingt} & \multirow[t]{2}{*}{\(\begin{array}{cc}\text { WDEL.FM } & 93.7 \\ \text { WIBR } & 99.5\end{array}\)} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline Berkeiey & \begin{tabular}{ll} 
KPFA \\
KPFB & 94.1 \\
\hline 9.3
\end{tabular} & \multirow[t]{2}{*}{San Fernando} & KVFM 94.3 & & & & & \\
\hline & KRE.FM 102.9 & & KALW 91.7 & & & \multicolumn{3}{|l|}{ILLINOIS
WOKZ.FM 100.3} \\
\hline Bljou & KHUR 99.8 & & KBAY.FM 104.5 & & C. & Anna & WRAJ.FM & 92.7 \\
\hline Claremont & KSPC -88.8 & & KCBS.FM 98.9 & & & Arlington Melgh & TS WNWC & 92.7 \\
\hline Coachella & KCHOFFM 93.7 & & KCBS.FM
KDFC
102.1 & Washington &  & Aurora & WKKD-FM & 95.9 \\
\hline Ei Cajon & \(\begin{array}{ll}\text { KUFM } \\ \text { KIEM } & 96.3\end{array}\) & & KEAR 97.3 & & WFAN 100.3 & Blarbondale &  & -91.9 \\
\hline Fresno & KARM.FM 101.9 & & FRC.FM 106.1 & & WGAY 99.5 & Carmi & WROY-FM & 97.3 \\
\hline & KCIB-FM 94.5 & & KGO-FM 103.7 & & GMS.FM 103.5 & Champaien & WDWS-FM & 97.5 \\
\hline & M - FM 97.9 & & KHIP 106.9 & & WMAL.FM 107.3 & Chleago & WBBM-FM & 96.3 \\
\hline & KRFM 93.7 & & RON-FM 96.5 & & WOL.FM 98.7 & & WCLM & 1 \\
\hline Garden Grov & KGGK \({ }^{\text {K4.3 }}\) & & KSFR 94.9 & & WRC.FM 93.9 & & WCLM & \\
\hline Glendalo & KFMU 97.1 & & KQBY-FM 95.7 & & WTOP.FM 96.3 & WHITE'S RAD & IO LOG & 187 \\
\hline & KUTE 101.9 & & KYA-FM 93.3 & & WWDC.FM 10.1 & 1.18S RADI & & \\
\hline
\end{tabular}




\section*{U. S. FM Stations by Call Letters}

\section*{C.L. Locaflon KAAR Oxnard. Calli.} KABC.FM Los Angoles. Callf. KACE-FM Riveraido, Calif. KADI St. Louls. Mo. KAFI Auburn, Callif. KAFM Salina, Kans, KAIM-FM Honolulu. Hawall KAJC.FM Alvin, Tex, KAIS Nowport Beaeh, Calif. KAKC Tulsa, Okla.
KAKI San Antonio Tox. KALB.FM Alexandria, La. KALH Danver, Colo. KALW San Franciseo, Calif. KAMS Mammoth Spring. Ark KANG St. Louls, Mo. KANT. FM Laneaster, Callif. KANU Lawrenco, Kans. (s) KANW Albuquerque, N. Mox. KAPP Redondo Beach, Calif
KARK Llttle Rock. Ark.
KARM-FM Frosno, Calif.
KARO Houston, Tex.
KASK-FM Ontario, Callf.
KASU Jonesuoro, Ark.
KATY.FM San Luls Oblspor. Callif. KAYD Beaumont. Tex
KAZz Austin, Tox.
KBAY San Franeliso, Callf. KBBI Los Anpeles, Calit
KBBL Wiehita, Kans KBBM Heyward Kans. KBBW Hay Dio. Calif. KBBW San Dlego, Calif. KBCA Los Angeles, Calif. KBCO San Franclseo, Calif. KBEE-FM Modesto, Callf. KBEY Kansas City, Mo. KBFM Loise, daho KBiM-FM Roswoll, N. Mex, KBIQ Los Angelos, Callf. KBMF Pampa. Tex.
KBMS Los Angoles. Callf. KBOA-FM Kennett, Mo. KBOI-FM Boise, Idaho KBOY-FM Medford, Oreg. KBTM.FM Jonesboro, Ark. KBUZ-FM Mesa, Ariz,
KBYR.FM Anchorage, Alaska(s) KBYU.FM Provo, Utah KCAL.FM Rediands, Callf. KCBH Beverly Hills, Callf. (s) KCBS.FM San Franciseo, Callf. KCFM St. Louis, Mo. (s) KCHO.FM Amarillo, Tex. (s) KCHQ.FM Conehella. Calif. (s) KCIB.FM Frosno, Callif. KCJC Kansas City, Kans. KCLE. FM Cleburne. Tex. KCMB.FM Wichlta, Kans. KCMI Los Angelos, Calif. KCMO.FM Kansas City, Mo. (s) KCMS. FM Manitou Springs, Colo. KCOM Omaha, Nebr.
KCPS Tacoma, Wash.
KCPX.FM Sait Lake City, Utah KCRA-FM Sacramento, Callf. KCRW Santa Monica, Callf. KCSM San Mateo, Cailf. KCUI Pella, la.
KCUR-FM Kansas CIty, Mo. KCVN Stockton, Calif. KDB-FM Santa Barbara, Calif. KDDD.FM Dumas, Tex. KDEF.FM Albuquerque, N. Mex, KOEN-FM Donver, Colo. KDFC San Franerseo, Calif. KDKA.FM Pittsburgh, Pa. DMC Corpus Christi, Tex. KOMI Des Moines, Jowa(s) KDNT-FM Denton, Tex. KDPS Des Moines, lowa KDUD Riverside, Galif. (s) KOVR Sioux City, la. KDWC West Covina, Callf. KEAR San Franeiseo, Calli. KEBJ Natlonal City, Calif. KEBR Phoenix. Arlz. KEBR Sacramento, Calif.
KEED.FM Springfield-Eugene,
Oregon

\section*{C.L. Locotlon} KEEN-FM San Jose, Calif. KEEZ San Antonio. Tox.(s) KEFC Waco, Tox. (s) KEFM Okiahoma City, Okia. KEFW Honolulu, Hawali KELE Phoenix, Arliz. KELT Harllngen, Tex.
KEMO St. Louis, Mo. KERN.FM Bakersfleid, Calif. KETO-FM Seattle, Wash. (s) KEZE Anahoim, Calif, Calif. (s) KEZE Anahoim, Calif. KFAC.FM Los Angeles, Callf, KFAM.FM St. Cloud, M1nn; KFCA Phoenix. Ariz. KFGQ.FM Boone, Iowa KFH-FM Wichita, Kans. KFJC Mountalnview Caile KFJZ Fort Worth. Tex. KFMB. FM San Dieso, Calif. KFMC Portiand, Oreg.
KFMH Colorado Springs, Colo. KFMK Houston. Tex. (s)
KFMM Tucson, Ariz
KFMN Ablleno. Tex.
KFMP Port Arthur, Tex: (s)
KFMQ Lincoln, Nebr.
KFMU Los Angoles, Calif. (s)
KFMV MInneapolls, MInn
KFMW San Bernardino, Callf.
KFMX San Diogo, Calif.
KFMY Eugens, Ores. (s)
KFNB Oklahoma City, Okia
KFNE BIg Springs. Tex.
KFOX-FM Long Beach, Callf. KFRC-FM San Franelseo, Calis. KFUO-FM Clayton, Mo.
KGAF-FM Gainesvilie, Tex.
KGB.FM San Diego, Callf. (s)
KGBN.FM Caldwell. Idaho
KGFM1 Edmonds, Wash.
KGGK Garden Grove, Callf. (s) KGLA Los Angeles, Calif. KGMG Portland, Oreg. (s)
KGMI Bellingham, wash KGMI Bellingham, Wash. KGNC. FM Amarillo, Tox.
KGO.FM
San Franciseo, Calif. KGPO Grants Pass, Oreg.
KGUD.FM Santa Barbara, Callf. KHAK-FM Godar Rapids, lowa KHBL Plalnviow. Tex.
KHBR-FM Hillsboro, Tex. KHCB Houston. Tex.
KHF Austn, Tex.
KHFM Albuquerque. N. Mox. (s)
KHFR-FM Monterey. Calif.
KHGM Beaumant, Tex. (s).
KHiP San Franclseo, Calif.
KHiP. San Franctseo, Calif.
KHIP, Sacramento, Calif. (s).
KHJ-FM Los Angeles, Cali).
KHMS EI Paso, Tox.
KHOF Los Angeles, Callf.
KHPC Brownwood, Callif.
KHPC Brownwood, Tex.
KHA.F M Spokane, Wash.
KHUL Houston, Tox.
KHUL Houston. Tox.
KHYI Fromont, Calis
KICN Omaha,
KIEM Eureka. Gallif.
KIHI Tulsa, Okla.
KiMP.FM Mt. Pleasant, Tex
KING.FM Seattle, Wash.
K 100 Oklahoma, Okla.
KIRO.FM Seattle, Wash.
KISA Kansas Clity, Mo.
KISS San Antonio, Tex.
KISW Soattlo, Wash.(s)
KITH Phoenix. Ariz.
KITT San Diego, Callp.
KIXL.FM1 Dallas, Tox, (s)
KJAZ Alameda. Calif. KJEM.FM Okla. City, Okla. KJM Ft. Worth, Tox, KJLM San Dlego, Calif. KJPO Fresno, Calif. KJRG Nowton, Kans. KJSB Houston, Tax. KLAC-FM Los Angelos, Callf. KLAY-FM Tacoma, Wash. KLCN.FM Blytheville, Ark. KLEN-FM Klileen, Tex.
KLFM Beverly Hills, Calit.

\section*{C.L.}

\section*{Location}

KLIR.FM Denver, Colo. KLI2-FM Brainerd, MInn. KLOA-FM RIdgeerest, Gallf KLON Long Beach, Callf. KLRO San Diego, Callu.
KLSN Seattio, \(W\) ash. (s). KLSN Seattio, Wash. (s) KLUB.FM Salt Lake City, Utah KLY Pasadena, Tex. KLYD.FM Bakersneld, Calif KMAK.FM Lynden, wash. KMAK-FM Fresno, Calif. KMAX Sierra Madro, Callf, KMCP Portland, Oreg. KMCS Soatio. Wash. KMER Fresno, Calif. KMFM Tularosa, N. Mex. KMHT Marshall, Tex.
KMJ.FM Frosno, Calif. KMLA Los Angeles, Callf. (s) KMLB.FM Monroo, La.
KMOX.FM St. Louis, Mo. KMUX FMiehita, Kans. KMYC-FM Marysvilio. Callt KMUZ Santa Barbara, Callf.(s) KNBC-FM San Franelseo, Calif. KNDE.FM Aztec, N.Mex. KNDX Yaklma, Wash. KNEB. FM Scottsbluft, Nebr. KNER Dallas, Tex.
KNEW-FM Scottsbluf, Nebr. KNFM Midland, Tex.
KNIK-FM Anchorage, Alaska KNOB Long Beach, Aliska KNOF St. Paul, Minn.
KNX.FM Los Ángeles, Calit. KOA.FM Denver, Colo. KOAP.FM Portland, Ore KOCW Tulsa, Okla.
KODA.FM Houston. Tex. KOGM.FM Tulsa, Okla KOGO San Disgo, Calif. KOIN-FM Portiand, Oreg. KOKH Oklahoma Cíty, Okla. KOL-FM Seattle, Wash. KONG.FM Visalia, Calif. (s) K00L.FM Phoenix. Arli. KORK Las Vegas, Nev. KOSE-FM Osceola, Ark. KOST Dallas. Tex.
KOSU-FM Silliwater, Okla.
KOTN-FM PIne Bluft, Ark.
KOY-FM Phoenlx, Ariz.
KOZE-FM Lowiston, Idaho
KPAT Albuquerque, N. Mex.
KPCS Pasadena, Calif.
KPDO.FM Portiand, Öre.
KPEN Atherton. Callip. (s)
KPFA Berkoley, Calif.
KPFB Berkeley, Calfi.
KPFK
Los Angeles, Gallf,
KPFM Portiand, Oreq.(s)
KPGM Los Altos, Calif.
KPLR-FM St. Louls, MO.
KPOI.FM Honolulu, Hawali
KPOJ.FM Portland, Oreg. KPOL.FM Los Anjoles, Callf. KPPS-FM Parsons, Kans. KPRI San Diego, Calif. (s) KPRN Seattoo, Wesh. KPSD Dallas. Tex.
K GAL.FM Omaha, Nebr. (s) KQBY.FM San F'ranelseo, Callif KOFM Portland, Oreg.
KaIP Odessa, Tox.
KaRO Dallas, Tex.
KQUE Houston. Tex.
KQV.FM PIttsburgh. Pa. KQXR Bakersherd, Calif. KRAK. FM Stockton, Callf. KRBE Houston, Tox.(s) KRBE Houston, Tox. (s) KRCC Colorado Sprinns. Colo. KRCW Santa Barbara, Calif.
KRE-FM Berkeley, Calli.
KREM-FM Spokane, Wash.
KRFM.FM Grand Junction, Colo. KRFM Fresno, Calif.
KRHM Los Angeles, Calif. (s) KRKD.FM Los Angeles, Callit
KRKH-FM Lubbock, Tex.
KRKY Denver, Colo.
KRLD-FM Dallas, Tex.
KRNW Boulder, Colo.
KRNY.FM Kearney. Holdroge,
KRON.FM San Franclsco Calisk
KRON-FM San Francisco, Calif.

\section*{C.L. Location}

KROW Santa Barbara. Callf.
KROY-FM Sacramento Calif.
KRPM San Jose. Calif.
KRSI Minneapolis. MI'in. (s)
KRSN-FM Los Alamos, N. Mex,
KRVM Eugene, Oreg.
KSCO Santa Cruz, Callf.
KSBW.FM Salinas, Callif.
KSDA La Sierra, Callf.
KSDB.FM Manhattan, Kans.
KSDS San Dlego. Callip.
KSEA San Digon. Calif.
KSEO.FM Durant. Okla
KSFM Dallas. Tex. (s)
KSFR San Franalisco
KSFR San Franelseo, Callif. KSFV San Fornando, Callif KSFX San Franelsco, Callf. K SHE Crestwood, Mo.
KSHS Colorado Springs Colo.
KSJO-FM San Jose, Calif. (s)
KSL.FM Salt Lake City. Utah(s)
KSLA Seattle. Wash. (s)
KSLH St, Louls, Mo.
KSLT TyIor, Tox.
KSMA.FM Santa Marla. Calif.
KSO-FM Des Molnes. lowa
KSPC Claremont Callf.
KSPI-FM Stillwater, Okla,
KSPL.FM Diboll, Tex.
KSRF Santa Monlca, Calif.
KSTE Emporia, Kans.
KSTL-FM St Lotis, Mo.
KSUI Iowa CIty, Jowa
KSWI-FM Omana, Nobr.
KSYN Joplin, Mo. (s)
KTAL Texarkena, Tox.
KTAR-FM Phoenix, Ariz
KTBC.FM Austin, Tex.(s)
KTCF Cedar Falls, lowa
KTEC Oretech, Oreg.
KTGM Denver, Colo.
KTIM San Rafael, Calif.
KTIS. FM Minneapolis, MInn.
KTJO.FM Ottawa, Kans.
KTNT.FM Tacoma, Wash.
KTOD Mt. Pleasant, Tex.
KTOP.FM Topekn, Kans.
KTOY Tacoma, Wash.
KTRB.FM Modesto, Calli. KTRH-FM Houston, Tox. KTSM.FM EI Paso. Tox. KTTS. FM SprIngfield, Mo. KTWR Tacoma, Wash.
KTXR-FM Springneld, Mo. KTXT-FM
KTYM.FM
Lingbock. Tox.
Kinood, Callf KUDEFFM OceansIde, Calif. KUDU.FM Ventura.0xnard, Calli. KUER Salt Lake CIty, Utah KUFM EI Cajon. Calit. KUFY Redwood City, Callf. KUGN.FM Eugene, Orea. KUHF Houston, Tex.
KUMD-FM Duluth, MInn.
KUOA.FM Siloam Spriniss, Ark. KUOH Honolulu, Hawail
KUOW Seattlo, Wash.
KUPD-FM Tempe, Ariz.
KUSC Los An Holos, Calif.
KUT.FM Austlin. Tox.
KUTE GIendale, Calif.
KVCR San Bernardino
KVCR San Bornardino, Callq.
KVEC.FM San Luis Oblispo, Callf.
KVEN.FM Ventura C KVEN.FM Ventura, Callif KVFM San Hernando, Callf. KVIL Highland PK., Tex.
KVOF.FM EI Paso, Tox. KVOK Honolulu, Hawall K KVSC K VIC Logan, Utah
KWAR Waverly, lowa
KWAX Eudene, Oreg.
K WFM Minneapolis, Minn. (s) KWGGFM1 Stockton, Callf.
KwIX St. Lauls, Mo
KWIZ.FM Santa Ana, Callf.
KWJB-FM Globe, Ariz.
KWME Walnut Creek, Callf. (s)
KWMO Odessa, Tex.
KWOA.FM Worthington. Minn
KWOC.FM Poplar Bluff, Mo
KWPC.FM Museatine, Iowa
C.L. Location

KWPM-FM West Plains, Mo KXFM Fort worth, Tex. KXJK.FM Forrest City, Ark KXLU Los Angeles, Callf. KXOR Fresno Callit (s)
KXRQ Sacramento, Calif.
KXTR Kansas CIty, Mo(s) KXYZ-FM Houston, Tex,
KYA.FM San Franciseo, Calif KYA.FM San MY, Ariz. KYFM Oklahoma City, Okla. KYSM-FM Mankato, Minn KYW-FM Cleveland, Ohio KZAM Scattle, Wash. KZFM Cortez, Colo. KZOM Oklahoma City, Okla. KZUN-FM Opportunity, Wash WAAB-FM Woreestor, Mass. WAAM-FM Parkersburg, W.Va. WABC-FM Now York, N.Y. WABE Atlanta, Ga
WABI-FM Bangor, Malne WABQ Cloveland, Ohio WABX Detroit, Mich. WABZ-FM Albomarlo, N.C. WACO Waco Tex. WAEB-FM Cincinnati, Ohio WAEF Syracuse, N.Y.
WAER Syracuse, N.Y. WAEZ Mlaml Beach, Fla. Fla. WAHR-FM Mlami WAIC San Juan, P.R. WAlV Indlanapolis. Ind. WAJC Indlanapolis, Ind. WAJM Montgomery, Ala. WAJP Jollet, lif.
AAJR-FM Mórgantown, W.Va. WAKR-FM Akron, Ohio WAKW.FM Cincinnati, Ohl WAMC Albany, N.Y. WAMC A Abany, N.Y. WAMF Pittsburgh. Pa WAMU.FM Washington. D.C. WAPC.FM Riverhead, N.Y. WAPI-FM Birraingham, Ala WAPS Akron, Ohlo
WAQE-FM Towson, Md.(s) WARK-FM Hagerstown. Md. WARL.FM Arjingtom, Va WARN.FM Fort Plerce, FI WASA-FM Havre Do Grace, Md. WASH Washington, D.C. (s) WATR-FM Waterbury, Conn WAUG-FM Augusta, Ga. WAUX-FM Waukesha, Wis WAVI-FM Dayton, Ohlo
wava Atlanta, Ga.
WAVU.FM Albertville, Ala. WAVY-FM Portsmouth, Va. WAYL MInneapolis, Mínn. (s) WAYZ-FM Waynesboro, Pa. WAZL.FM Hazelton, Pa. WBAA-FM W. Lafayetto, Ind. WBAB-FM Babylon. N.Y WBAI New York, N.Y. WBAP-FM Ft. Worth, Tex
WBAY-FMi Green Bay, Wls WBAY-FAi Green Bay, Wis.
WBBB.FM Burlington, N.C. WBBB-FM Burlington,
WBBF-FM Rochestor, N.Y

WBBA-FM Augusta, Ga. 11 . WBBR-FM E. St Louis, WBBW-FM Youngstown, Ohio
WBCB-FM Levittown.Fairles
WBCI-FM WIlliamsburg, Va, WBCM.FM Bay City, Mich.
WBCN Boston. Mass.
WBEN.FM Buffalo, N.Y.
WBET-FM Brockton, Mass. W BEX-FM Chillicothe, Dhio WBEZ Chleago, II.
WBFG Dotrolt, Mich.
WBFO Buffalo, N.'Y.
WBGM Tallahassec. Fla.
WBGO Newark, N.J.
WBGU Bowling Grén, Dhlo WBIE.FM Marietta, Ga. WBIR-FM Knoxvillo, Tenn. WBIV Wethersfield, N.
WBKV-FM West Bend, Wis.
WBKW Beekley, W.Va.
WBKY Lexingtong ky. WBLY-FM, Springtiend, (s) WBNS-FM Cofumbus, Ohio (s) WBOE Cleveland Ohio
WBOR Brunswlek, Maine
WBOS-FM Brookline, Mass
WBRB-FM Mit. Clements, Mich.
WBRB-FM Mt. Clements,
WBRC Birmingham. Ala.
WBRC Birmingham. Ala.
WBSM-FM New Bedford, Mass.
WBST Muncis, Ind
WBT.FM Charlotte. N.C.(s)
WBUF Buffalo, N.Y.
WBUT.FM Butler, Pa.
WBUY-FM Lexington, N.C.
C.L. Locatlon

WBVA Woodfridge. Va. WBVP. FM Beaver Fa WBWC Borea. Ohio
WBZ-FM Boston, Mass
WCAC Anderson. S.C. WCAO-FM Baltimore, Md. WCBC.FM Anderson. Ind. WCBE Columbus, Ohlo WCBM-FM Baltimore, Md. WCBS-FM Now York. N.Y WCCC-FM Hartford, Conn. WCCV-FM Charlottesvilio, Va. WCED-FM Dubois, Pa. WCFM Wlliamstown, Mass. WCHA-FM Chambersburg, pa.(s) WCHD Detroit, Mleh. WCKR-FM Miaml, Fla,
WCLE.FM Cloveland, Tenn, WCLI-FM Corning, N.Y. WCLM Chleago, III. WCLO-FM Janesvilie. Wis, WCLT-FM Newark, Ohio WCMC.FM WIldwood, N.J. WCME-FM Brunswick. Maine
WCMF-FM Rochester. N.Y.(s) WCMI-FM Ashland, Ky. CMO Marletta. Ohio WCMR-FM Elkhart, Ind. WCNB.FM Connersvile, Ind. WCNO Canton, Ohio(s) WCOD Richmond. Va. WCOH-FM Nownan, Ga, WCOP-FM Boston, Mass. WCOP-FM Boston, Mass.
WCOS.FM Columbia. S.C. WCOU.FM Lewiston. Maine WCOU-FM Lewiston M Maine W CPO-FM CIncinnatt, Ohlo WCPS.FM Tarbor, N.C. WCRB-FM Waltham, Mass.(s) WCRT-FM BIrmingham, Ala. WCRT-FM Blrmingham, Ala. (s) WCSI-FM Columbus. Ind. wCSa Central Square, N.Y WCSA.FM Andalusia, Ala. WCTC-FM New Brunswick, N.J. WCTM Eaton, Ohio
WCTW-FM Now Castle, Ind. WCUE.FM Akron, Ohio WGUM-FM Cumberland, Md. WCUY-FM Cleveland Hits., Ohio WCW AI Willlamsburg, Va WDAC Lancaster, Pa. WDAF-FM Kansas Cliy. Mo. WDAS-FM Philadelphia, Pa. WDBJ-FM Roanoke, Va. WDBO-FM Orlando, Fla.
WDBQ-FM Dubuque, Iowa WDDE Hamden. Conn. WDDS-FM Syracuse, N.Y. WDEL.FM Whmingoton, Del. WDET.FM Detroit, Mech. WDFM State College, Pa. WDGO Cleveland, Onlo(s)
WDHA.FM Dover, N.J.(s) WDHA-FM Doveri. WDIA-FM MOmphis, Tenn. WDJK Atlanta. Ga.
WDJR oil City, Pa.
WDMB-FM Statesvilic. N.C. WDMB-FM Statesvilic. N.C.
WDNC-FM Durham. N.C. WDOC-FM Prestonsburg, Ky. WDOD-FM Chattanooga, Tenn. W00K-FM Cleveland, Ohlo w DOV-FM Dover, Del. WORK.FM Greenvilie Ohio WORK-FM Greanvilia, Ohio WDSC.FM Dillon, S.C.
WDSU.FM New Orleans, WDTM Datroit. Mich. (s) WOTR Osiroit, Mich. WDUB Granvilis, Dhio WDUN-FM Galnesville, Ga. WDUQ Pittsburoh. Pa. WDUZ.FM Green Bay, Wis. WDWS-FM Champalon, III. WEAV.FM Plattsbursh. N.Y WEAW-FM Evanston, 111 WEBH Chicago. 111
WEBQ-FM Harrisburg III. WECW EImira, N. \(\mathbf{Y}\) WEDK Springfield, Mass. WEEC Springfield, Ohlo WEEP.FM PItsburgh. Pa. WEEP.FM Pittsburgh. WEFA Waukegan, III. WEFM Chicago, III. (s)
WEGO.FM Concerd, N.C WEGO-FM Concord,
WEHS Chicago, 11 . WEHS Chicago, III.
WEKZ-FM Monroe, Wis.
WELF Glen EIfyn, isf.
WELG EIgin, IIf.
WEMC Harrisonburg. Va. WEMP-FM Milwaukee, Wis. WEOK.FM Phicago, 181.
WEOK-FM Poughkeepsia, N.Y.
WEOL-FM Elyria. Ohio
WEPM-FM Martinsburg, W.Va. WEPS Eigin, III.
WEAR Goldsboro, N.C.
WERE.FM Cieveland, Ohlo

\section*{C.L. Location} WERI-FM WesterIy, R.I. WERS Boston, Mass. WESC. FM Greenville, S.C. WEST.FM Easton, Pa. WETL South Bend Ind. WEVC Evansvilie. Ind W EVD-FM New York, N.Y. WEWO-FM Laurinburg, N.C
WFAA-FM Dallas, Tex. WFAH.FM Alliance, Ohio WFAN Washington, D.C. WFAS.FM White Plains, N.Y. WFAU.FM Augusta, Maine WFAW Fort Atkinson, Wis. WFBC.FM Grenville, S.C. WFBE Filnt, Mich.
WFBG-FM Altoona, Pa,
WFBM-FM Indianapolis, Ind. WFBM-FM Winanapolis, ind. WFCI Franklin. Ind. WFCJ Miamisburg, Ohio WFCR Amherst, Mass,
WFDS.FM Baltimore, Md WFFM Cincinnatl, Ohio WFGM Cincinnathburg. Mass. WFGM-FM Fitchburg, Mass. WFHA-FM Red Bank. N.J.
WFHR.FM Wisconsin Rapids, Wis. WFID Rio Piedras, P.R. WFIG Sumter, S.C.
WFIL-FM Phlladelphla. Pa WFIU Bloomington, Ind. WFIU Bloomington, WFLM FF. Laudardale, Fla. (s) WFLN-FM. Phlladelphia, Pa.(s) WFLO Faraville. Va. Ten, WFLY Troy, N.Y.
WFMA Rocky Mount, N.C. WFMB Nashville. Tenn. WFMD-FM Frederlek, Md, WFME Detrolt. Mlieh. WFMF Chicaro, !11. WFMG Gallatin. Tenn \({ }_{2}\) WFMH-FM Culiman. Ala WFML Washington, Ind. WFMM.FM Baltimore, Md. WFMQ Chicago, III. (s) WFMS Indlanapolis. Ind. WFMT Chicago, III. (s) WFMW-FM Madisonville, Ky WFMIX Statesville, N.C. WFMZ Allentown, Pal. WFNS.FM Burlington, N.C. WFOB-FM Fostoria, Ohio WFOL Hamilton, Ohto(s) WFOS South Norfolk, Va. WFPL Loulsvillo. Ky. WFGM San Juan, P.R. WFRO-FM Fremont. Ohlo WFST.FM Caribou, Maine WFSU-FM Tallahassee. F WFUR-FM Grand Rapids, Mich. WFUV New York. N.Y. WFVA.FM Fredericksburg, Va. WGAR-FM Cleveland, Ohio WGAU-FM Athens, Ga. WGAY Silver Spring. Md. WGBH-FM Cambridge, Mass, WGBI-FM Seranton. Pa. WGGS-FM Rod Llon, Pa WGCS Goshen, Ind.
WGEM-FM Quincy, 111. (s) WGET-FM Gottysburg' Pa. WGGC Glasgow. Ky,
WGGM Taylorville. III. WGH.FM Newport News, Va. WGHF Newton, Conn.(s) WGHJ Lawrence, Mass. WGKA-FM Atlanta. Ga. WGLM Richmond, In WGMS. FM Washington, D.C. WGNB St. Petersburg. Fla, WGNC-FM Gastonia, N.C.
WGPA.FM Bethlehen, Ga. WGPA.FM Bethlehem, Ga WGPM Detrolt, Mich.
WGPS Greensboro, N.C.
WGR.FM Buffalo, N.Y. WGRE Greencastio, Ind. WGRV-FM Greenville, Tenn. WGTB-FM Washington, D.C. WGTS-FM Takoma Park, Md. w GUC Cineinnati, Ohio WGVE Gary, Ind.
WGWR-FM Asheboro. N.C. WGYA Interlochen. Mich. WHAF M Delafield, WIs. WHAD Detafield, Whis. WHAT-FM Phlladelphia. Pa. (s) WHAT-FM Phiadelphia. Pa, WHBC.FM Canton, Ohio WHBF-FM Rock Isfand, III. (s) WHBM.FM Xenia Ohio WHCI Hartford clity, Ind. WHCN Hartford, Conn. WHCUHMM Thaca, N.Y.
WHDL.FM Allegheny, N.Y.
C.

Location
WHEN-FM Syracuse, N.Y. WHFB.FM Benton Harber, Mlch. WHFI West Paterson. N, J. WHFM Rochester. N.Y. WHFS Bethesda. Md. (s) WHHI Highland, Wis. WHHS Havertown, Pa.
WHIM.FM Providence, R.I. WHIO-FM Dayton. Ohio WHIZ-FM Zanesville, onio WHK.FM Cleveland, Ohio WHKP. FM Hendersonvilio, N.C. WHKW Chllton, Wis.
WHKY-FM Hickory, N.C. WHLA Holmen, Wis.
WHLD-FM Nlagara Falls, N. Y. WHLI-FM Hompstead N. Y. WHLM-FM Bloomsburg, Pa WHMA-FM Annisten, Al WHNC.FM Henderson, N.C. WHO-FM Des Moines, Iowa WHOH Hamilton, Ohio WHOK-FM Lancaster, Ohlo WHOM-FM New York. N.Y WHOO-FM Orlando, Fla. (s) WHOS-FM Decatur, Ala. WHPE-FM High Point, N.C. WHPE-FM High Point, NiC. WHPS HIgh Point N.C. WHRB.FM Cambridge, Mass. WHRM Wausau, Wis.
WHSA HIghland TwP., Wis. WHA.FM Eatontown, N. WHUS Storrs, Conn. WHWC Colfax, wis. WHYL-FM Carisif, Pa, Mass. WHYY Phlladolphla, Pa. WIAL Eau Clalre, Wis. IAN indianapoins. Thd WIBC-FM Indianapolls, Ind. WiBG-FM Phlladelphia, Pa. WICB lithaca, \(N_{N} Y^{\prime} \dot{Y}\) WIFI Glenside, Pa WIFM.FM EIKin, N.C. WIKY-FM Evansvillo, Ind. WIL-FM St. Louls, Mo. WIMA.FM LIma, Ohlo WINA.FM Charlottesville, Va. WINE.FM Kenmore, N.Y. WINZ.FM Mlaml, Fla. WIP-FM Philadelphla, Pa. WIRA.FM Ft. Pierce, Fla. WIRG Rochoster, N.Y.
WISH-FM Indlanapolis, Ind. (s) WISK Medford, Mass.
WISN.FM Milwaukee, WIs.
WISZ-FM Madison, Wis.
WITA.FM San Juan, P.
WITA-FM San Juan, P.R.
WITH-FM Baltimore, MO
WITZ-FM Jasper, Ind.
WIUS Christlansted, V.I.
WJAC-FM Johnstown, Pa. (s) WJAS-FM Pittsburgh, P WJAX-FM Jacksonville, Fla. WJBK-FM Detrolt. Mleh. W JBL-FM Hortand. Mich WJBR Wllmington. Del, (s). WJCD-FM Seymour, Ind. WJEF-FM Grand Rpds., Mleh. (s) WJEH-FM Gallipolis, Ohlo WJEI.FM Haperstown. Md. WJGG Houshton, Mleh. WJHL-FM Johnson City, Tonn. WJM-FM Lansing, Mieh. W Jlv Cherry Valley. N. Y. WJJD-FM Chicago, III. WJLK.FM Asbury Park, N.J. WJLN Birmingham, Ala. WJMD Bethesda, Md. (s) WJDF Athens, Ala. WJOL.FM Jollet, ill.
\begin{tabular}{|c|c|c|c|}
\hline C.L. Location & C.L. & C.L. Locotion & \\
\hline KIP.fM Pouphkeepsie, N,Y. & NAS Now Albany. NAV.FM Annapoi & waxt.f M Palm Boach, Fla & wTBO-FM Gumberland, md. \\
\hline FM Raleloh & W NBC.FM New York. N.Y. & WRAK-FM Anna & WTES Ca \\
\hline KF Plitsburgh, Pa. (s) & WNBFFM & WRAL-FM Rale & cx st. \({ }^{\text {che }}\) \\
\hline LS Mariott &  & W RAY-FM Prineton, & \\
\hline KLW.FM Grand Rapids, Mich. & W & WRBS Baltimore, Md, & THS \\
\hline & & WRC.F M Washingto & \\
\hline F Hopk & WNEM.FM Bay Clyy Mleh. (s) & WREM Y \({ }^{\text {W }}\) Oricans, & \\
\hline Kop.Fm Bin & WN & WREO-FM Ashta & WTMA.FM Cha \\
\hline KOX-FM Framinoham, Mass. & WNEX.FM Macon, & WREV.FM Reldsvilie, N.C. & M \\
\hline WKPT. FM Kingsport Tenn. (s) & WNGO.FM May & & \\
\hline m Mob & WNIB Chica 0 ., III. & FK Richmond, & \\
\hline WKRT-FM Cortland, N.Y. & & m & \\
\hline WKSU. Kewanee III. & WNNJ. FM No & S. FM Alexander City, & M Washington, D.C. \\
\hline  & w & WRIT-FM Milwauke & WTOS Wauwatosa, Wis. \\
\hline Paducah, K y & WNOW.FM York & WRJN.FM Ratine, Wis. & \\
\hline AD.FM Danb & WNSH Highland Pari. III. & WRKO.FM Boston. Mass. & \\
\hline WLAN.FM Lancanter, Pa: & WNSL.FM Laurel, Miss. & RL8 Long Br & FM Tow \\
\hline WLAP.FM Lexington, Ky. & WNTI Hacketstown, N.J. & WRLD.FM Lan & M Westminster, Md. \\
\hline WLAG.FM Grand Rapids, Mleh. & & WRMI-FM Morr & \\
\hline WLBH.FM Mattoon, ill. & WNWC.FM Arlington Hth., III. & Atlantio city. N.J. & TVB.F \\
\hline FM Lobanon. Pa. & No & WRNW. Mount K & \\
\hline WLDS.FM Jaclid & & WROC.FM Roches & \\
\hline WLEC.FM Sandusky, Ohio & & WROW-FM Roektord illy. & \\
\hline M & , & WRag -FM Car & Ustalo \\
\hline WLIN Merrill & WOHS.FM Shelby, N.C. & WRPN.FM, RI & WUom Ann Arbor, Mleh. \\
\hline WLIR Hicksville, N.Y.(s) & W01-FM Ames. & WRR & \\
\hline FM Peok & Woiv De Ruyter & WRSW.F & US \\
\hline OLSM & WOKZ.FM Alton. 111. & WRTC.FM Har & US \\
\hline OE.FM Leaksvilite, N.C. & WOMC Royal Oak, Mich. (s) & WRUTF-FM Philad & VAM-FM Altoona, Pa. \\
\hline Minneapolis. \({ }_{\text {M }}\) & & & WVCG-FM Cora \\
\hline WLOS. FM Ashevilio. N.C. & & & \\
\hline R & Gr & & \\
\hline V & & w & W VJS.FM Owensbora, Ky, \\
\hline & & WRXO-FM Roxboro \({ }^{\text {W.C. }}\) ( &  \\
\hline & & & WVLN.FM \\
\hline (3) & WOSC.FM & WSAI.FM CIn &  \\
\hline and Raplds, mieh. & WOSU.FM A Colum & M. FM Sa & w \\
\hline AZ-FM Mateon, Gai. & WOTW.FM Nashus N.H. & WSBC-FM Chitajo. ili.(s) &  \\
\hline & wo & WSBFF-FM Clemson. S.C. & W V SH Huntinoton, Ind. N.Y. \\
\hline 1. & WPAR & WSCH Hartiord. Conn. & WVST \\
\hline io. \({ }^{\text {Fla }}\) & WPAD.FM Padueah & WSEI Emnoham & W \\
\hline me & M Pater & WSFM Birmingha & WWCO.FM Waterbury, Conn. \\
\hline , & WPAY-FM Port & WS & WWGP.FM \\
\hline MDE Groensboro \({ }^{\text {a }}\) N.C. (3) & & WSIU Carbondalo &  \\
\hline & & WSJG Hallandale. F & WWIL.FM Ft. Laude \\
\hline 研 & FM Pol & WSKS Wabash. Ind. & WWI.FM Detroit, Mith. \\
\hline WMFR.FM High Point. N.C. & \({ }_{\text {M }}\) & - FM Nashville. Tenn. & WWMT \\
\hline \({ }^{\text {H }}\) & Providene & WSLN Delawar & WWOD.FM Lynenburfive. \\
\hline WHE Toledo Ohio Mass & O-FM Bradbury Hts., M & WSLS. FM Roanok & WON.FM W \\
\hline MIL.FM Milwaukee, wis. & WPIC.FM Sharon, Pa. & WSMC.FM Coliegea, Waldorl, Md. & I, \\
\hline Miv Marion. & WPIT.FM Pitsburah. Pa, & WSMI.FM Litehtid, III. & WWSW.FM Pit \\
\hline 1x.F. \({ }^{\text {F }}\) & Ta & SNW.FM Bripeto & P \\
\hline W. Milwauker, W1s. & ¢mou & FM Charlotie, N.C. & WWWS Greenvil \\
\hline WMNA.FM Grotna, Va. & O.FM Allanta, Ga. &  & \\
\hline  & Pntssilile, Pa. & U S. Orange, N & \\
\hline FM Marion, Ohio & RK Winter Park, Fi & Det & XHR \\
\hline Lm Aurora, 111. & M San & M Saran ors. & N \\
\hline WHS Harrisbure. Pa. & WPRS.FM Parls, Ill, l & WSPET. Springuille. N.Y. Wis W & WXTO-FM Grand Rapids, MIt \\
\hline Park Ridyo, III. & WPRW-FM Manasas, Va. & 10 & WXUR-FM Medis, Pa, \\
\hline (W.FM Mt. Washinaton, N.H. & WPTF.EM Raleion, N.C. & \[
{ }_{\mathrm{C}}^{\mathrm{C}}
\] & Wr \\
\hline WMUA Amherat. Mass. & WPTH Fort Wayne. Ind. & WSTR EM Stura & WYBC.FM Now Haven, \\
\hline UL Huntlington, w.Va, & WPWT Phlladolohis, \(P_{\text {a }}\) & WSTV.FM Stoubonvilie, Ohlo & WYCE Warwlek, R.I. \\
\hline UN Munelo. Ind & WaAL Philadelohna, Pa, & VS.FM Crewe, Va. & WYCR York-Hanover, Pa. \\
\hline WMUZ Detroit, & w & WSWM Enat Lansing. Mleh. (s) & \\
\hline A.FM Martinsville, Va.(s) & w & M M & Wra \\
\hline Vo.FM Mount Vornon, onlo & Ams. & WTAG.FM Worcester, Mass. & Wram.FM \\
\hline 2 K Detrolt, mleh. & 1 & WTAX-FM Springneld, & WYsz wellow Sorinos, Oh \\
\hline AD-FM Norman, Okla. & QXR-FM Now York, N.Y.(s) & WTBC-FM Tuscaloosa, A & \%22 Wilkes-Barre, Pa \\
\hline
\end{tabular}

\title{
Canadian FM Stations by Location
}
Locetlon
Brampton, Ont.
Brantford, Ont.
Cornwall, Ont.

Brantford, Ont.
Cornwall, Ont. Edmonton, Alta.

Ft. William, Ont.
C.L. Mc. Location CHIC.FM 102.1 CJSS.FM 104.5 CFRN.FM 100.3 CJCA-FM 99.5
CKUA-FM 98.5 \(\begin{array}{ll}\text { CKPR.FM } & 94.3\end{array}\) Halliax N . KIngston, Ont.

Kitehener, Ont Lethbridge, Alta London, Ont. montrial, Que
C.L. Mc. Location CHNS-FM 96.1 CFRC.FM 91.9 Oshaws CKLC-FM 89.5 Ottawa, Ont. CKWS-FM \(\begin{array}{ll}\text { CKCR-FM } & 96.7\end{array}\) CHEC.FM 100.9 CFPL.FM 95.9 \(\begin{array}{ll}\text { CFPL-FM } & 95.9 \\ \text { Ontharines, }\end{array}\) \begin{tabular}{cr|l} 
CBF.FM & 95.1 & Sherbrooke, Que. \\
CBM-FM & 100.7 & TImmins, Ont.
\end{tabular}
C.L. CFCF.FM 106.5 Toronto, Ont. CKLB-FM CBO.FM CFMO-FM \begin{tabular}{l} 
CJBC.FM 98.1 \\
CJ \\
\hline 101.5
\end{tabular}

CKTB-FM 97.7 CHLT.FM 102.7 CKGB-FM 94

\section*{Vancouver, B.C.}

Verdun, Que.
\(\begin{array}{llll}\text { Verdun, Que. } & \text { CHQM-FN } & \text { CKVL-FM } & 96.5 \\ \text { Vletorla, B.C. } & \text { CKOA.FM } & 98.5\end{array}\)
C.L. Me. CBC.FM 99.1 CFRB-FM 99.9 CJRT.FM 91 CBU. \(\begin{array}{llll}\text { winnlpeg, Man, CJLW.FM } & 93.9 \\ \text { CJOB.FM } & 97.5\end{array}\)

\title{
Canadian FM Stations by Call Letters
}
C.L. Location

CBC-FM Toronta, Ont. CBF-FM Montreal, Que. CBM-FM Mantreal, Que cso-FM ottawa, Ont. CBU.FM Vancouver, B.C. CFCF-FM Montreal, Que. CFPL-FM London. Ont. CFRA \(=\) FM Dttiwn. DnL
C.L. Location

CFRB-FM Torante, Ont. CFRC.FM Kingston, Ont. CFRN-FM Edmontan, Alta, CHEC-FM Lothbridge, Alta. CHFI-FM Torunto, OWL CHIOFM Sherbrooke, CHRC-FM Quebee, Qus. C今日R-FM Rimoushl, Que

\author{
c.L.
}

Leceftion
CJCA-FM Edmonton, Alta. GJCB.FM Sydney, N.S. CJOB-FM Winnipas. Wan. CIBT-FM Toronto, Ont. C3SS-FM Cornwall, Ont. CKCR-FM Kitchener, Ont. CKDA-FM Vietoria, B.C. CKLB-FM Othawas Ont
C.L

Lecaflom
CKLC.FM KIngston, Dnt CKLW-FM Windsor, Ont. CKPG.FM Brantford, Ont. CKPR.FM Ft. Willam. Dint CKSF.FM Cornwall, Ont. CKTB-FM 8t. Catharines, Ont. CKUA-FM Edmonton, AIta. CKVL-FM Verdun, Que. CKW8.FM KIngston, Dit.

\section*{U. S. Television Stations}

Territories and possessions follow states. Chan., channel number; asterisk (*) indieates educational station.



Canadian Television Stations


Locaflon Grand Falls
St. John's St. John's
Stephenvilio

\section*{NOYA SCOTIA}
\begin{tabular}{|c|c|}
\hline Antigonish & UBTV \\
\hline Halliax & \[
\begin{aligned}
& \text { CJCH } \mathrm{CHT}
\end{aligned}
\] \\
\hline Inverness & CJCB-TV. \\
\hline Liverpooi & CBHT-1 \\
\hline New Glasgow & CFCY-TVA \\
\hline Sheiburne & CBHT-2 \\
\hline Sydney & CJCB.TV \\
\hline
\end{tabular}

Yarmouth
C.L. Chon. CJCN.TV 4 CJON-TV

Barrio
Cornwall
Elk Lake

\section*{Hamilton} Kapuskasing Kingston
Kitchener Kitchene
London North Bay Parry Sound Poterborough Poterbar
Ottawa

\section*{Port Arthur Sloux Lookout Sturgeon Falls Sudbury Toronto}


Location
Windsor
Wingham

\section*{PRINCE EDWARD} ISLAND
Charlottetown QUEBEC
Carleton
Clermont
Estcourt
Jonquife
Matane
Montreal
New Carllsle \(\begin{array}{cr}\text { CHAU-TV } & 5 \\ \text { CJAO-TV-I } & 80 \\ \text { CHSM-TV } & 7 \\ \text { CFCV-TV-I } & 75 \\ \text { CJES-TV-1 } & 70 \\ \text { CKRS-TV } & 12 \\ \text { CKBL-TV } & 9 \\ \text { CBFT } & 2 \\ \text { CFCF-TV } & 12 \\ \text { CFTM.TV } & 10 \\ \text { CBMT } & 6 \\ \text { CHAU.TV } & 5\end{array}\)
C.L. Chan. Locallon Queber
RImouskl Riviere du-Loup Rouyn Sherbrooke
Three Rivers

SASKATCHEWAN
\begin{tabular}{|c|c|}
\hline Carlyle Lake & CKDS-TV-2 \\
\hline East End & CJFB-T \\
\hline Moose Jaw & CHAB-T \\
\hline Nipawin & CKBI-TV. 4 \\
\hline Prince Albert & CKBI.TV. \\
\hline Regina & CKCK-TV \\
\hline Saskatoon & CFQC.TV \\
\hline Swift Current & CFIB.TV \\
\hline Val Marie & C1F \\
\hline Wanganui & CKBI-TV-2 \\
\hline Yorkton & cKos-TV \\
\hline
\end{tabular}
C.L Chan. CFCM.TV CKMI:TV CJBR-TV CKRT.TV
CKRN.TV CHLT:TV CKTM.TV IS \(\begin{array}{cc}\text { CKDS-TV. } 2 & 7 \\ \text { CJFB-TV } & 2 \\ \text { CHAB-TV } & 4 \\ \text { CKBI-TV.4 } & 2 \\ \text { CKBI-TV-1 } & 2 \\ \text { CKCK-TV } & 2 \\ \text { CFQC-TV } & 8 \\ \text { CFJB-TV } & 5 \\ \text { CJFB } & 2 \\ \text { CKBI-TV-2 } & 7 \\ \text { CKOS-TV } & 2\end{array}\)

\section*{World-Wide Short-Wave Stations}

Most international broadcasting is done within frequency limits agreed upon af international conventions. These frequency ranges are listed here, of the right, expressed both in frequency and by meter bands (wave-length).

Reception in the various bands varies occording to the time of day and season of the year. Reception in the 60,49 and 41 meter bands is best at night during the winter months. Reception in the 31 and 25 M . bands is best at night, but all year. Reception in the \(19,16,13\) and 11 M . bands is best during the day, also at night during the summer in the 16 and 19 M . bands. This listing includes only SWBC often heard in the U.S. and Conoda, exclusive of those in the continental U.S.

Abbr.: AIR—All India Radio; RAl—Radiotelevisione ltaliona; RTF—Rodiodiffusion Television Francaise; VOA-Voice of America; RFE-Rodio Free Europe. ©denotes stations beaming evening U.S. timel broadcasts to the U.S., \(\dagger\) morning or afternoon broodcosts, \(V\)-varies.

Kcs. Call and Location 3245 YVKT, Caracas, Ven. 3255 ELBC, Monrovia. Liberla 3265 ZFY Georgetown, Br.
3280 W.I.B.S., Grenada. WIndward is. 3285 H17T, Santo Domingo, D.R. 3290 HJCQ. Bogota, Colombla 3295 YVOG, Trujlilio, Ven. 3300 B.H.B.S., Belizo, Br.
305 YVKX, Caracas, Venduras 9315 Fort de France, Martinlque 3316 Freetown, Sierra Leene 3325 HISU, Santo Domingo, D.R. 3326 Kaduna, Nigeria
3335 YVLC, Valencia, Von. 3366 Accra, Ghana
3375 H 15 B, Santlago, D.R. 3395 YVOJ, Merlda, Ven. 4630 HCGBI, Quito, Ecu.
4725 Rangoon, Burma
4765 HJEF, Call. Col.
4770 ELWA, M10nrovia, Lib.
4770 YYMW, Punto Fili, 4770 YVMW, Punto FiJi, Ven. 4780 YVLA, Valencia, Ven. 4790 YVQN, Puerto La Cruz, 4805 ZYS8, Manaus, Braz. 4810 YYMG, Maracaibo, ven. 4830 YVOA, San Cristobal.
4835 HJKE, Bogota. Col. 4840 v Lourenco Marques, Moz. 4840 YVOI, Valera, Ven. 4845 HJGF, Bucaramanga, Col. 4850 YVMS, Barquisimeto, Ven.
4870 Cotonou. Dahomey Rep. 4880 YVKF,Caracas, Ven. 4895 Daker, Senegal
4895 ZYR22, Manaus, Braz. 4900 Y H 4 AC, Caracas, Bent 4900 H HRQNS. Puerto Cortes,
4905 HRQNS, Puerto Cortes, Hon.
4910 HCIMI, Qulto, Ecua. 4910 Conakry, Gulnea
4920 VLMid, Brisbane, Aus.
4920 Y YKR Caracas, \(\mathbf{4}\).
4935 HJLF, Ibague, Col.
4940 HCXZ I, Guayaquil, Ecu.
4940 YVMO, Barquisimeto.
4945 HJCW, Bogota, Col Ven.
4945 Paradys So Afr
4950 Dakar Senegal
4950 YVMM., Coro, Ven
4960 YVGA, Cumana, Von
4970 YVLK, Caracas. Ven.
4972 Yaounde, Cameroon
4985 Radio La Gruz del Sur, La
Paz, Bolivia
4990 YVMQ, Barquisimeto,
4995 CRERZ, Luanda, Angola

Kcs. Call and Location 5010 HCRCX, Qulto, Ecu. 5010 St. Georges, Windward 8 sl . 5020 HJFW, Manizales, Col.
5020 Nlamey, Niger Rep.
5030 YVKM, Caracas, Ven.
5040 Y YMA. Maracatoo, Ven
5075 HJGC Boracas, COI
5075 HJGC Bogota, Col.
5875 TGNA, Guatemala, Guat.
5954 TIQ, Puerto LImon, C. R.
5960 HJCF, Bogota. Col. 5980 y TGAR, Guatemala, Guat 59804 VB, Port au Prince, Halti 5990 TV
5990 taja,
5990 Hada, cuba
5995 Fort.de. France. Mart.
6000 Radio Americas
6005 R1AS, Berlin, Ger.
6010 XEOI, Mexico City, Mexico 6015 PRAB, Recife, Braz.
\(6015 v\) Habana, Cuba
6020 Hiversum. Neth.
6020 Khabarovskr USSM
6025 Lisbon, Port.
6030 Baghdad, Iraq
6035 Rangoon, Burma
6035 HRTL, Tequeigalpa, Hond.
6037 TIFC, San Jose, C. R.
6040 HJLB, Jbapue, Col.
6040 VOA, Munich, Germany
6045 HOU's1, David, Pan.
6050 HCJB, Quito, Eeua.
6050 BBC, London. Eng.
6055 HJEX, Cal, Coi.
6050 RAI, Caltanissetta, It. 6060 RAI, Caltanissetta, It.
6060 YDF, Dlakarta Indonesla 6065 XEXG, Loon. Mex. 6065 KEXG,
6065 Horby, Sweden
6070 Sofla, Bulgarla
6070 Biak, West Papua
6070 BBC, London, Eng.
6075 Osterloog, Ger.
\(6080 \mathrm{ZL7}\), Wellington, N, Z.
6080 Trans World Radlo, Monaco 6082 OAX4Z, Lima, Peru
6085 Munich, Ger.
6090 VLI6, Sydney, Aus. 6090 Lúxembourg, Lux. 6090 XECM T, C. EI Mante.

Mex.
O, D.R.
6090 HI2U, Santo Domingo,
6095 ZY B7, Sao Paulo, Braz. 6100 Belgrade, Yugo.
\(G 105\) XEQM, Merida, Mex 6105 Cologne, Ger.
6110 BBC. London, Eng. 6115 ZYC7, Rio de Jan., Braz. 6120 LRXI, Buenos Aires 6120 4VEH, Can Haltion, Halti 6120 BBC, Limassol, Cyprus 6130 Port Moresby, New Guinea 6135 HRMF, La Celba, Hond. 6135 Papecte, Tahiti
6140 VLW6,'Porth, Aus
6145 RTF, Allouis, Franco 6145v PRLí9, Rlo de Jan,, Braz.

\section*{METER BANDS}

4750 to \(5060 \mathrm{kc} / \mathrm{s}\) ( 60 meter bond) 5950 to \(6200 \mathrm{kc} / \mathrm{s}(49\) meter bond) 7100 to \(7300 \mathrm{kc} / \mathrm{s}(41\) meter band) 9500 to \(9775 \mathrm{kc} / \mathrm{s}\) (31 meter bond) 11700 to \(11975 \mathrm{kc} / \mathrm{s}\) (25 meter bond) 15100 to \(15450 \mathrm{kc} / \mathrm{s}\) ( 19 meter band) 17700 to \(17900 \mathrm{kc} / \mathrm{s}\) ( 16 meter band) 21450 to \(21750 \mathrm{kc} / \mathrm{s}\) ( 13 mefer band) 25600 to \(26100 \mathrm{kc} / \mathrm{s}\) ( 11 meter band)

Kes. Call and Location
6150 BBC, London, Eng.
6155 Wien, Austria
6155 FEN, Tokyo, Japan
6160 HJKJ, Bogota, Col.
6160 Alglers. Algeria
6660 Aaigions, S. Vietnam
6165 HERS, Bern, Suitz.
6170 B BC, LImassol, Cyprus
6170 Singapore, Sing.
6170 VOA, Tanglers, Morocto
6175 RTF, Allouls, France
6175 Cayénne, Fr. Gulana 6185 Lisbon, Port.
6185 H JCT, Bogota, Col.
6195 BBC, London. Eng.
6195 Pyongyang. N, Korea
6195 Andorra, Andorra
6200 4VHW, Port-auePrines,
6305 Andorra. Andorra
7095 v Tehran. Iran
7105 Madrid Colombo, Coylon
7110 BBC, London, England
7115 Rabat, Morocec
7120 BBC, London, England
7125 Warsaw, Poland
7 7i35 Talpeh,' Talwan
7145 Bamako, Mall
7150 Moseow, U.S.S.R.
7155 VOA, Tanglers, Mor.
\({ }_{7160} 10\) RTF. Paris, France
\({ }_{7165} 71\) RFE, Germ.
7170 Algiers, A10.
\({ }_{7180} 180\) Moseew. U.S.S.R
7185 BBC, London, Eng.
7185 Paradys, So. Afriea
7200 R. Malaya, SIng.
7205 VOA, Salonika, Gr.
7210 Dakar, Mall Fed.
7215 Trans World Radio, Monaco
7220 VLD7, Melbourne, Aus.
7220 Budapest, Hung.
7230 BBC, London, Eng.
7240 RTF, Parls, France
7250 BBC, London, Eng.
7255 Sona, Bulg.
7265 Salgon, Vietnam
7270 Motola. Sweden
7275 RAI, Rome. It
7285 Ankara, Turk.
7290 Slngapore
7290 Mostow, U.S.S.R.
7290 RAi, Rome, il.
7295 Makassar, Celebes
7295 RFE, Ger.
7340 MOscow, U.S.S.R.
7398v Damascus, U.A.R.
7480 Peking, China
7650 YNMS, Leon, Nie.
8016 Beirut, Lebanon
9009 Tel Avly, Israel
9360 COBC, Habana, Cuba
9360v Madrid, Spain -
9380 v Madrld, Spain
9410 BBC. London. Eng.
9440 CP38, La Paz, Boi.

Kes. Call and Location
9480 Peking, China
9485 HI3U, Santo Domin
9500 Mascow, U.S.S.R. 9 .
9505 Rabat, Mor.
9505 HOLA, Colon, Pan.
9505 NHK, Tokyo, Japan
9505 Belgrade, Yugoslavia
9510 London, England
9515 RAI. Caltanlssetta, It. Mex
9520 VOA Tangler, Mor.
9520 Copenhagen, Den. -
9520 Port Moresby, New Guinea
9520 OAXBE, Iquitos, Poru
9525 NHK, Tokyo, Japan
9525 Warsaw, Poland
9530 AlR, Delhi, Indla
9530 VOA, Courier, Rhodes
9530 YVMZ, Maracalbo, Ven.
9535 VOA. Manila, P.I.
9535 HER4, Bern. Swltz.
9540 ZL2, Wellington, N.z.
9540 Warsaw, Poland
9540 Khabarovsk U.S.S.R.
9545 ZYS43, Curitiba. Braz.
9545 HED5, Bern, Switz.
9550 Prague, Czacho.
9555 BBC, London, Eng.
9555 YSS, San Salvador, E. S.
9555 XETT, Mexico City, Miex.
\({ }_{9560}\) RTF, 'Parls, Franco
9560 Colombo, Ceylon
9563 OAX4R. Lima, Peru
9565 ZYK 3 , Recife, Braz.
9565 Radlo Litherty, Ger.
9570 RAI, Rome, italy
9575 ZYZ27, Rio de Jan.. Braz.
9580 VLA9, Melbourne, Aus.
9580 BBC, London, Eng.
9585 ZYR56. Sao Paulo, Braz.
9585 RTF, Allouis, France
9585 Djakarta, indonesia
9590 Hilversum, Neth.
9590 ELWA. Monrovia, Llberia
9595 J023, Tokyo, Japan
9600 Tashkent, U.S.S.R.
9600 BBC, London, End. Mexico
9600 XEYU, Mexicia, DF, Mox
9600 CE960v, Santlaso, Chllo
9605 Cologne, Ger.
\(9605 v\) Athens, Greece
9610 VLX9, Perth, Aus.
9610 ZYC8, Rio de Jan., Braz.
9610 Oslo, Nopway \(\bullet\)
9610 OAXBC. Iqultos, Peru
9615 VOA, Tangier, Morocto
9620 ZYR96, Sao Paulo, Brazo
9620 Moscow. U.S.S.R.
\({ }_{9625} 9620\) SBC Lidon Vietnam
9625 BBC, London, Eng.
9625 OAXXK, lquitos, Peru
9630 CR6RL, Luanda. Anp.
9635 ZYR83. Aparecida, Braz
9640 BBC, London, Eng.
9640 Cologne, Germany -
\(\qquad\)
WHITE'S RADIO LOG

Kes. Call and Location
9640 Acera, Ghana
9640 HLK5, Seoul, Korea
9645 HVI. Vatican City
9650 BBC., Limassol. Cyprus
9650 Moscow, U.S.S.R.
9650 Amman, Jordan
9655 Radio Free Eurove. Ger. 9660 LRX, Buenos Aires, Arg. \(\$ 660\) VLQ9, Brisbane, Aus. 9660 Radlo Liberty. Ger.
9660 Moscow, U.S.S.R.
9667 Hargelsa, Somalla
9667 V TGNB, Guatemala, Guat.
9670 COCQ. Havana, Cuba 9675 BBC. London. Eng. 9675 NHK, Tokyo, Japan 9680 VLH9, Aiblboupne, Aus. 9680 XEQQ, Mexico City, Mex. 9680 Lishon, Port. 9685 Havana, Cubi
9690 LRA32, Buenos Alres.
9690 BBC, London, Eng.
9690 BBC, SIngapore
9700 Sofa. Bulgarla
9700 Leopoldville. Congo Rep.
9700 CE970, Santlago Chile
9705 Kabul, Afohan.
9710 BBC, London. Eng
9710 RAI, Rome. it.
9720 Moscow, U.S.S.R.
9725 Europe
9725 EBC, London, England
9730 Brazzaville, Congo Rep.
9730 Laipzio, E. Ger.
\(973002 \mathrm{H7}\), Manila, P.I
9735 Cologne, Germany
9735 HI2T, Santo Domingo, D.R
9740 Lisbon, Port
9740 Khabarovsk, U.S.S.R
9740v LR57, Buenos Alres, Arg. 9745 Brussels, Belg.
9745 HCJB, Qulto, Ecua. -
9755 ZYW23, Golanla, Braz.
9755 RTF, Paris, France
9760 Habana, Cuba
9760 BBC , London. Eng.
9770 Brazuavilie. Congo Rep.
9770 4VEH, Cap Haition, Halti
9772 Oario, Egypt
9785 Poking, China
9795 Calro, U.A.R.
9800 Poking. China
9815 St. Georges, Windward IsI.
9825 BBC, London, Eng. -
9833 Budapest, Hung.
9840 Hanoi. N. Vietnam
9865 D jakarta, indonesía
9915 BBC. London, Eng.
9920 Poking, China
9940 Peklng, China
9973 Peking. China
0530 Alma Ata, U.S.S.R.
0910 Ulan Bator, Outer Mongolie
I 1290 Poking. China
1600 Peking. China
1672 Karachi, Pakistan
\(11695 v\) Tashkent, U.S.S.R
1700 TGQB, Quetzatenango, Gua
1705 NHK, Tokyo, Japan
1705 Horby, Sweden
1710 VLBic. Melbourns, Aus. \(t\)
11710 AlR, Delhi. India
1710 D jakarta. Indonesla
1720 BBC, Limassol, Cyprus
11720 Brussels, Belgium
11725 Brazzavilie, Congo Rep. 11725 VOA, Colombo, Ceyton 11725 Prague, Czecho.
11730 Hilversum. Neth,

Kes, Call and Location 11730 LRA35, Buenos Arles, Arg 11735 Rabat, Moroceo
11735 Khabarovsk. U.S.S.R. 11740 VLCII, Maibourne. Aus. 11740 HVA, Vatican State 11740 CEII74, Santiago, Chllo 11740 Poking, China
11745 RFE, Europe
11745 Cairo, Egypt
11750 BBC London, Eng.
11750 BBC, London. Eng.
11750 BBC, Singepore
11750 BBC, Sindapore
11750 FEN, Tokyo, Japan
11750 FEN, Tokyo,
11755 RFE, Europe
1755 RFE, Europe
I 1755 Hilversum, Neth.
I 1755 Leopoldvilie, Condo Rep. 11755 Leopoldvilíe, Conno Rep.
11760 VLBII, Malbourne, Aus. I 1760 Lourenco Marques, Moz. 11760 Lourenco Marques, Moz.
I 1765 ZYB8, Sao Paulo, Braz.
11765 CP39, La Paz, Bollvia
11765 Naven, E, Germany
11765 Naven, E, Germany
11770 BBC, London. Eng.
11770 VOA, Munich, Germany
11775 ZYZ28, Rlo de Jan., Braz 11780 2L3, Wellington, N. \(\mathbf{Z}\). 11780 NHK, Tokyo, Japan
11785 Djakarta, Indon
I1785 VOA, Melolos, P.I,
11795 Cologne, Ger.
I1895 D akarta, Indo
Il 800 v Warsaw, Poland
II800v Warsaw, Poland
Il 805 v RAI, Rome, It.
ilsio vLCíl, Melbourne. Aus. \(\uparrow\)
11810 Bucharest, Rom. Aus. \(\uparrow\)
II815 Paradys, \&. Africa
11820 Peking, China
11820 B BC, London, Eng.
11820 XEBR, Hermosillo, Mex.
11820 Abldjan. Ivory Coast
I1825 ELWA, Monrovia, Lib.
11830 Alolers, Aloberl
11830 VOA, Colombo, Ceyion
Ils30 Montevideo. Uru.
II830 Peking Chins
11840 VOA, Tangler, Mor
11840 LIsbon. Port.
II840 Hanol, N. Vietnam
11845 RTF. Allouls, France 11845 Karachl, Pak.
11850 Sona, Bulg.
11850 Khabaroysk. U S. S.
11850 Khabarovsk, U.S. S.R.
11850 y 2PA3, Asuncion, Paraguay
11855 Radio Free Europe, Ger.
I 1855 O2H8, Manlla, P.i.
\(11855 v 0\) omdurman, Sudan
I1860 BBC, London. Eng.
11865 PRAB, Reclfe. Braz
11865 HER5. Born. Switz.
II870 Moscow, U.S.S.R.
I|875 Habana. Cuba
11875 NHK, Tokyo, Japan
11875 ZYN32, Salvador. Braz.
11880 XEHH, Mexico City, Mex.
l|885 Karachi, Pak.
11885 Radio Free Europe, Ger.
11890 BBC, London, Enrland
li895 Dakar, Mali Fed.
11895 Radio Froe Europe
11895 V0A Pore Phil
II900 CEll90, Valparaiso, Chilo
II905 RAI, Rome, Italy -
11910 Budapest, Hung.
I 1910 Budapest, Hung.
I 910 anokok. Thal.
11915 HCJB, Quito Ecua.
11915 Calro, Egypt
I 1920 DXF2, Manila, P.i.
il925 ZYR78, Sao Paulo, Braz.

Kes, Call and Location
11925 HLK6. Seoul, Korea 1925 Warsaw.Pol.
1925 Tashkent, U.S.S.R,
11930 BBC, London. Eno.
11935 Radlo Liberty, Ger.
1940 ZPAS. Enearnation. Par,
I 1940 AFRTS. Munleh. Ger.
Ii940 AFRTS, Munleh, Ger.
Il945 Peking, China
Il945 BBC, London, Eng.
II945 Cologne, Germany
11950 Jidda, Saudl Arab,
Il350 Hilversum, Neth.
11950 Salgon. S, Vletnam
I 1955 BBC, London, Eng.
11955 BBC. Singapore
11960 CEli96, Santiago. Ch.
11960 Conakry, Culnea.
11960 Conakry, Gulnea
11965 R'adio Liberty, Ger.
II975 Poking, China
11975 ELWA, Monrovia, LIberia
11980 Moscow, USS,
I!980 Moscow, U.S.S.R.
11990 Prague, Czecho.
12030 Moseow. U.S.S.R.
12055 Poking, China
12080 Lisbon. Port.
12095 BBC, London, Eng.
15060 Poking. China
I5070. BBC. London. Eng.
15080 Melbourne, Australia
15085 St. Georges, WIndward IsI.
BWI'
15085 Paradys, So. Afrlea
I 5095 PekIng. ChIna
i5105 AlR. Dehli. India
15105 AlR, Dehli, India
15110 XERR, Mexico, D.
15110 XERR, Mexico, D. F., Mex,
IS145 HCJB, Quito, Ecuador -
15115 Peklng, China
15120 Calombo, Ceyion
15120 RAI, Rome, Italy
15120 Warsaw, Poland 1
15120 HVJ, Vatican city
15125 Seoul. Korea
15125 Lisbon, Portugal -
15130 RTF, Allouls, France
15130 VOA, Mololos, P, I.
15135 PRB23. Sao Paulo, Braz.
15135 NHK
15185 NHK, Tokyo, Japan
15135 Radio Free Europe, Port.
15140 Peking. China
15140 BBC
15140 B BC, London. Eng.
15145 ZYK3s, Recifo, Brazll
I5145. Radio Free Europe. Port.
I 5150 Peking, China 15150 Poklng, Chlna
15153 DAX4T, Lima, Peru
\(151552 Y 89\). Sao Paulo, Brazil
15155 ELWA, Monrovia, Libe. 5155 Horby, Sweden
15155 VOA, Mololos, P. I.
\(\mathbf{1 5 1 6 0}\) RTF, Allouis, France
15160 XEWW, Mexico CIty, Mex
15160 Ankara, Turkey City, Mex
15165 ZYN7. Fortaleza, Braz
15165 Copenhagen. Denmark.
15165 Damascus, Syria
15170 Tromso Norway
15170 Radio Fres Europe, Port. 15175 Luxembourg. Lux
15180 Osi, Norway ourn
15185 voA Poro Australla
15185 VOA, Poro, P. I.
5185 Radio Frae Europe, Port
15190 Brazzaville, Congo Rep
\(\$ \$ 190\) Helsinkl, FInland \(\}\)
15190 Moscow, USSR
15195 Radio Free Eurode, Ger. 15205 XESC, Mexico City, Mex. 15210 VOA, Malolos, P. I.
15210 2PA7, Asuncion. Paraguay
15215 Radio Free Europs, Port. 15215 VOA, Oklnawa

Kes, Coll and Locotlon
\(\dagger 5220\) Hilversum, Neth. \(\dagger\)
I 5225 Taipal, Taiwan, China
15230 VOA. Colombo, Ceylon
15230 BBC, London. Eng.
15235 Belrut, Lebanon
15285 NHK, Tokyo Japan
15235 NHK, Tokyo, Japan
15240 VLBis, Molbourne. Aus,
15240 Horby, Sweden
15240 Moseow, USSR
15240 Moscow. USSR
I 5240 Belorade, Yugoslavie
15245 ZYE21, Balom, Brazll
I5245 Leopoldville. Coneo Rep,
I 5250 VOA, Melolos. P. I.
15250 Bucharest, Rumania -
15255 Radio Free Europe, Port
I 5260 FEN, Tokyo, Japan
15265 Colombo, Ceylon
I 5265 VOA, Muntch, Ger,
I 5275 Cologne, Germany
15275 Warsaw, Poland \(\dagger\)
15280 ZL4, Wellington, N.Z.
15285 Prague, Czecho.
15290 voA, Tanglers, Mor.
I5290y Hahana, Cuba
15295 Bet.ut. Lebanon
15295 PRL8, Rlo de Jan., Brazil
15295 NHK, Tokyo, Japan
15295 Colagne, Germany
15300 BBC, London, Eng. \(\uparrow\)
15300 Bucharest, Roumanis
\(\$ 5300 \mathrm{v}\) Lourenco, Marques, Moz.
15305 Radio Liberty, Ger.
15310 AlR, Dolhi, India
15315 VLC15, Melbourne, Aus.
15315 HEU6, Bern, Switz.
15325 ZYR228, Sao Paulo, Braz.
I 5830 VOA, Munleh, Germany
15530 VOA, Tanglers, Mor.
15335 VOA, Poro, P, I.
15340 Radio Liberty, Germany
I 5340 Y Habana, Cuba
15345 Talpel, Talwan, China
15345 Rabat. Moroceo
15350 Luxembourg. Lux.
15355 Radlo Free Europe, Port
\(\$ 5370\) ZYCS, Rio do
- 5370 ZYC9. Rio de Jan., Braz.
i 5370 Radio Liberty. Germany
15375 BBC, London, Eng.
15385 D2F3, Manila, P.I.
15385 CXA60, Montevldeo, Urug.
15385 LIsbon, Port.
15385 VOA, Tanglers, Mor.
15390 NHK, Tokyo, Japan
15395 Radio Liberty, Germany
15400 RAI. Rome Ifaly
15400 RAI, Rome, Italy
15405 Cologne, Germany
5425 Hilversum, Neth.
15440 VOA Munich.
15440 VOA, M unich, Giormany
I 5460 y PZC, Paramarlot
15460v PZC, Paramariob.
I5465 Paramaribo, Surinam
15475 Calro, UAR
15555 Poking, China
17705 Luanda, Angola
17725 ZYR232, San Jose Dos Campos, Brazll
17740 Peking, Chlna
17745 Acera, Ghana
17780 B BC, London, England
17790 BBC, London, Eng.
17790 BBC, London, Eng.
17845 Brussals, Belgium
17865 Brussels, Belglum
17865 Brussels, Belglum
17875 Habana, Cuba
17880 Lisbon. Portugal
17890 HCJB, Quito, Ecuador
17895 Lisbon, Port.
17900 Calro, Egypt
17900 Calro, Egypt
21620 Habana, Cuba

\section*{Canadian Short-Wave-Domestic and International}

\section*{*Transmitter at Sackville, New 8runswick}

Kc. C.L. Location 5970 CBNX St. John's, Nnd. 5970 CKNA Montreal, Que.' 5990 CHAY Montroal, Quo.* 6005 CFCX Montreal, Que. 6010 CJCX Sydney. N.S. 6030 GFVP Calgary. Alia.
6060 CKRZ Montreal. Que. 6060 CKRZ Montrail, Que." 6070 CFRX Toronto, Ont.
6080 CKFX Vaneouver. B.C. 6090 CBFW Montreal, que. 6090 CKOB Montreal, Que.

Ke. C.L. Location
6130 CHNX Halifax, N.S. 6160 CBUX Vaneouver, B.C. 9520 CBFR Montreal Que. 9585 CKLP Montreal, Que. 9610 CBFX Montreal, Que. 9610 CHLS Montreal. Que. 9630 CBFO Montreal. Que. 9630 CKLO Montreal, Que. 9710 CHLR Montreal, Que. 9740 CHFO Montreal. Que.

\section*{Ke. C.L. Locgilon} I1705 CBFY Montresl, Que. 11720 CBFL Montreal Que. 11720 CBFL Montreal, Que.
11720 CHOL Montrial, Que. 11760 CBFA Montreal, Que. 11760 CKRA Montreal, Que. II900 CKEX Montreal, Que. II900 CKEX Montreal, Que. 19090 CKEX Montreal, Que.*
CKLX Montreal, Que. 15105 CKUS Montreal, Que. 15190 CBFZ Montreal. Que.

\section*{Ke. C.L. Location}

I5I90 CKCX Montroal, Que. 15255 CKSR Montraal, Que. 15275 CKBR Montreal, Que.
15320 CKCS Montreal, Que.* 17710 CHSB Montreal, Que. 17735 CHRX Montreal, Que. 17820 CKNC Monireal, Que. * 17865 CHYS Montreal, Que.* 21600 CKRP Montreal, Que. 21600 CKRP Montreal, Que.*
21710 CHLA Montreal, Que.*

\title{
PICK THE GAREER YOU WANT IN THE WONDERFUL FIELD OF ELECTRONICS TRAIN AT HOME WITH THE LEADER
}

\section*{INDUSTRIAL ELECTRONICS}


Prepares you to be an Electronic Technician in industry, business, government, military. Computers, telemetry, automation, missiles, rockets are changing our world. Course includes illustrated lessons, special training equipment sent at no extra cost.

\section*{TV-RADIO COMMUNICATIONS}


Get actual experience as NRI prepares you for a choice of Communications fields and an FCC License. Broadcasting, microwave, radar mobile and marine radio, navigation devices are some subjects covered. Special training equipment.

TELEVISION-RADIO SERVICING (includes color tu)


Learn to fix radios, TV sets, hi-fi, etc. Earn sparetime money starting soon after enrolling. Train for moncy-making opportunities in your own spare-time or fulltime business or working for someone else. Special training equipment included.

FCC COMMERCIAL LICENSE


For men who want to operate or service transmitting equipment used in communications or to work on C-Band. From Simple Circuits to Broadcast Operation, this new NRI course trains you quickly for your Government exams.

\section*{Job Counselors Advise Electronics}

A career in Electronics offers unlimited opportunity to men who qualify. When you train at home through NRI, there's no need to give up your job or go away to school. And there are no special requirements of previous Electronics experience or education. Train with the leader. Your NRI training is backed by nearly 50 years of success. Mail the postage-free card. National Radio Institute, Washington 16, D. C.

\section*{Cut Out and Mail—No Stamp Needed}


NATIONAL RADIO INSTITUTE Washington 16, D. C:

Please send me your Electronic, Radio-TV catalog without cost or obligation. I am interested in course checked below. (No salesman will call. PLEASE PRINT.)
\(\square\) Industrial Electronics
\(\square\) Radio-TV Servicing

Name \(\qquad\) Age
\(\qquad\) State
\(\qquad\)
\(\qquad\) ACCREDITED MEMBER NATIONAL HOME STUDY COUNCIL Approved for Veterans under Korean GI Bill

\section*{To assure ADVANCEMENT or to} turn your hobby into a new and PROFITABLE CAREER in the fast growing field of ELECTRONICS
you should investigate the NRI Home-Study Courses in Industrial Electronics, Radio-TV Servicing, Radio-TV Communications

There is an immediate and growing need for trained Technicians in many branches of Electronics. Better-than-average jobs await you. Join the thousands of NRI graduates who have benefited from new careers in this Electronic Age. Mail postage-free card.

\section*{Turn Page for More Facts}

> BUSINESS REPLY MAIL no postage stamp necessar if malled in the united states

POSTAGE WILL BE PAID BY
NRI
3939 Wisconsin Avenue Washington 16, D.C.

\section*{Qualify for Higher Pay}

You must be trained to qualify for higher earnings and advancement. Whichever branch of Electronics you select, you'll find that NRI training is the time-proved way to get ahead in this interesting, growing industry.


Training Equipment Included Learn Electronics through 'learn-bypractice" methods. At no extra cost, NRI sends special equipment that gives actual experience, makes theory easy-to-grasp, interesting. All equipment is yours to keep.


Oldest and Largest School As the oldest and largest homestudy school of its kind, NRI can supply training at reasonable cost. Monthly payment plans. Mail postage-free card for NRI CATALOG. National Radio Institute, Washington 16, D. C.
Mail Postage-Free Card```


[^0]:    Name

